skip to main content


Title: Non‐Equilibrium Fractionation Factors for D/H and 18 O/ 16 O During Oceanic Evaporation in the North‐West Atlantic Region
Abstract

Ocean isotopic evaporation models, such as the Craig‐Gordon model, rely on the description of nonequilibrium fractionation factors that are, in general, poorly constrained. To date, only a few gradient‐diffusion type measurements have been performed in ocean settings to test the validity of the commonly used parametrization of nonequilibrium isotopic fractionation during ocean evaporation. In this work, we present 6 months of water vapor isotopic observations collected from a meteorological tower located in the northwest Atlantic Ocean (Bermuda) with the objective of estimating nonequilibrium fractionation factors (k, ‰) for ocean evaporation and their wind speed dependency. The Keeling Plot method and Craig‐Gordon model combination were sensitive enough to resolve nonequilibrium fractionation factors during evaporation resulting into mean values ofk18 = 5.2 ± 0.6‰ andk2 = 4.3 ± 3.4‰. Furthermore, we evaluate the relationship betweenkand 10‐m wind speed over the ocean. Such a relationship is expected from current evaporation theory and from laboratory experiments made in the 1970s, but observational evidence is lacking. We show that (a) in the observed wind speed range [0–10 m s−1], the sensitivity ofkto wind speed is small, in the order of −0.2‰ m−1 s fork18, and (b) there is no empirical evidence for the presence of a discontinuity between smooth and rough wind speed regime during isotopic fractionation, as proposed in earlier studies. The water vapord‐excess variability predicted under the closure assumption using thekvalues estimated in this study is in agreement with observations over the Atlantic Ocean.

 
more » « less
NSF-PAR ID:
10379311
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
127
Issue:
21
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains monthly average output files from the iCAM6 simulations used in the manuscript "Enhancing understanding of the hydrological cycle via pairing of process-oriented and isotope ratio tracers," in review at the Journal of Advances in Modeling Earth Systems. A file corresponding to each of the tagged and isotopic variables used in this manuscript is included. Files are at 0.9° latitude x 1.25° longitude, and are in NetCDF format. Data from two simulations are included: 1) a simulation where the atmospheric model was "nudged" to ERA5 wind and surface pressure fields, by adding an additional tendency (see section 3.1 of associated manuscript), and 2) a simulation where the atmospheric state was allowed to freely evolve, using only boundary conditions imposed at the surface and top of atmosphere. Specific information about each of the variables provided is located in the "usage notes" section below. Associated article abstract: The hydrologic cycle couples the Earth's energy and carbon budgets through evaporation, moisture transport, and precipitation. Despite a wealth of observations and models, fundamental limitations remain in our capacity to deduce even the most basic properties of the hydrological cycle, including the spatial pattern of the residence time (RT) of water in the atmosphere and the mean distance traveled from evaporation sources to precipitation sinks. Meanwhile, geochemical tracers such as stable water isotope ratios provide a tool to probe hydrological processes, yet their interpretation remains equivocal despite several decades of use. As a result, there is a need for new mechanistic tools that link variations in water isotope ratios to underlying hydrological processes. Here we present a new suite of “process-oriented tags,” which we use to explicitly trace hydrological processes within the isotopically enabled Community Atmosphere Model, version 6 (iCAM6). Using these tags, we test the hypotheses that precipitation isotope ratios respond to parcel rainout, variations in atmospheric RT, and preserve information regarding meteorological conditions during evaporation. We present results for a historical simulation from 1980 to 2004, forced with winds from the ERA5 reanalysis. We find strong evidence that precipitation isotope ratios record information about atmospheric rainout and meteorological conditions during evaporation, but little evidence that precipitation isotope ratios vary with water vapor RT. These new tracer methods will enable more robust linkages between observations of isotope ratios in the modern hydrologic cycle or proxies of past terrestrial environments and the environmental processes underlying these observations.   Details about the simulation setup can be found in section 3 of the associated open-source manuscript, "Enhancing understanding of the hydrological cycle via pairing of process‐oriented and isotope ratio tracers." In brief, we conducted two simulations of the atmosphere from 1980-2004 using the isotope-enabled version of the Community Atmosphere Model 6 (iCAM6) at 0.9x1.25° horizontal resolution, and with 30 vertical hybrid layers spanning from the surface to ~3 hPa. In the first simulation, wind and surface pressure fields were "nudged" toward the ERA5 reanalysis dataset by adding a nudging tendency, preventing the model from diverging from observed/reanalysis wind fields. In the second simulation, no additional nudging tendency was included, and the model was allowed to evolve 'freely' with only boundary conditions provided at the top (e.g., incoming solar radiation) and bottom (e.g., observed sea surface temperatures) of the model. In addition to the isotopic variables, our simulation included a suite of 'process-oriented tracers,' which we describe in section 2 of the manuscript. These variables are meant to track a property of water associated with evaporation, condensation, or atmospheric transport. Metadata are provided about each of the files below; moreover, since the attached files are NetCDF data - this information is also provided with the data files. NetCDF metadata can be accessed using standard tools (e.g., ncdump). Each file has 4 variables: the tagged quantity, and the associated coordinate variables (time, latitude, longitude). The latter three are identical across all files, only the tagged quantity changes. Twelve files are provided for the nudged simulation, and an additional three are provided for the free simulations: Nudged simulation files iCAM6_nudged_1980-2004_mon_RHevap: Mass-weighted mean evaporation source property: RH (%) with respect to surface temperature. iCAM6_nudged_1980-2004_mon_Tevap: Mass-weighted mean evaporation source property: surface temperature in Kelvin iCAM6_nudged_1980-2004_mon_Tcond: Mass-weighted mean condensation property: temperature (K) iCAM6_nudged_1980-2004_mon_columnQ: Total (vertically integrated) precipitable water (kg/m2).  Not a tagged quantity, but necessary to calculate depletion times in section 4.3 (e.g., Fig. 11 and 12). iCAM6_nudged_1980-2004_mon_d18O: Precipitation d18O (‰ VSMOW) iCAM6_nudged_1980-2004_mon_d18Oevap_0: Mass-weighted mean evaporation source property - d18O of the evaporative flux (e.g., the 'initial' isotope ratio prior to condensation), (‰ VSMOW) iCAM6_nudged_1980-2004_mon_dxs: Precipitation deuterium excess (‰ VSMOW) - note that precipitation d2H can be calculated from this file and the precipitation d18O as d2H = d-excess - 8*d18O. iCAM6_nudged_1980-2004_mon_dexevap_0: Mass-weighted mean evaporation source property - deuterium excess of the evaporative flux iCAM6_nudged_1980-2004_mon_lnf: Integrated property - ln(f) calculated from the constant-fractionation d18O tracer (see section 3.2). iCAM6_nudged_1980-2004_mon_precip: Total precipitation rate in m/s. Note there is an error in the metadata in this file - it is total precipitation, not just convective precipitation. iCAM6_nudged_1980-2004_mon_residencetime: Mean atmospheric water residence time (in days). iCAM6_nudged_1980-2004_mon_transportdistance: Mean atmospheric water transport distance (in km). Free simulation files iCAM6_free_1980-2004_mon_d18O: Precipitation d18O (‰ VSMOW) iCAM6_free_1980-2004_mon_dxs: Precipitation deuterium excess (‰ VSMOW) - note that precipitation d2H can be calculated from this file and the precipitation d18O as d2H = d-excess - 8*d18O. iCAM6_free_1980-2004_mon_precip: Total precipitation rate in m/s. Note there is an error in the metadata in this file - it is total precipitation, not just convective precipitation. 
    more » « less
  2. Abstract

    Hydrogen (δD) and oxygen (δ18O) isotopic ratios are strongly correlated in precipitation over time and space, defining the meteoric water line, and the slope of this δD‐δ18O relationship reflects covariations of deuterium excess (d‐excess) with δD or δ18O. This δD‐δ18O line provides a tool for inferring hydrologic processes from the evaporation source to condensation site. Here, we present δD‐δ18O relationships on seasonal and annual timescales for daily precipitation, snow pits, and a 15‐m ice core (Owen) at Summit, Greenland. Seasonally, precipitation δD‐δ18O slopes are less than 8 (summer = 7.70; winter = 7.77), while the annual slope is greater than 8 (8.27). We suggest that intra‐season slopes result primarily from Rayleigh distillation, which, under prevailing conditions, produces slopes less than 8. The summer line has a greater intercept (higher d‐excess) than the winter line. This separation causes annual slopes to be greater than seasonal ones. We attribute high summer d‐excess primarily to contributions of vapor sublimated from the Greenland Ice Sheet and other terrestrial sources. High sublimated moisture proportions result in a large separation between seasonal δD‐δ18O lines, and thus high annual slopes. Inter‐seasonal weighting of precipitation amount also influences annual slopes because slopes are weighed by the number of storms each season. Using snow pit measurements, we demonstrate that precipitation isotopic signals translate to the snowpack. We generate indices to determine Sublimation Proportion Index and Precipitation Weighting Index, and find that annual Owen core δD‐δ18O line slopes are significantly related to these indices, demonstrating that these factors are recorded in ice cores.

     
    more » « less
  3. Abstract

    Stable oxygen isotopic ratios in corals (δ18Ocoral) are commonly utilized to reconstruct climate variability beyond the limit of instrumental observations. These measurements provide constraints on past seawater temperature, due to the thermodynamics of isotopic fractionation, but also past salinity, as both salinity and seawater δ18O (δ18Osw) are similarly affected by precipitation/evaporation, advection, and other processes. We use historical observations, isotope‐enabled model simulations, and the PAGES Iso2k database to assess the potential of δ18Ocoralto provide information on past salinity. Using ‘‘pseudocorals’’ to represent δ18Ocoralas a function of observed or simulated temperature and salinity/δ18Osw, we find that δ18Oswcontributes up to 89% of δ18Ocoralvariability in the Western Pacific Warm Pool. Although uncertainty in the δ18Osw‐salinity relationship influences the inferred salinity variability, corals from these sites could provide valuable δ18Oswreconstructions. Coordinated in situ monitoring of salinity and δ18Oswis vital for improving estimates of hydroclimatic change.

     
    more » « less
  4. Abstract

    The clumped isotopic composition of carbonate‐derived CO2(denoted Δ47) is a function of carbonate formation temperature and in natural samples can act as a recorder of paleoclimate, burial, or diagenetic conditions. The absolute abundance of heavy isotopes in the universal standards VPDB and VSMOW (defined by four parameters:R13VPDB,R17VSMOW,R18VSMOW, andλ) impact calculated Δ47values. Here, we investigate whether use of updated and more accurate values for these parameters can remove observed interlaboratory differences in the measured T‐Δ47relationship. Using the updated parameters, we reprocess 14 published calibration data sets measured in 11 different laboratories, representing many mineralogies, bulk compositions, sample types, reaction temperatures, and sample preparation and analysis methods. Exploiting this large composite data set (n= 1,253 sample replicates), we investigate the possibility for a “universal” clumped isotope calibration. We find that applying updated parameters improves the T‐Δ47relationship (reduces residuals) within most labs and improves overall agreement but does not eliminate all interlaboratory differences. We reaffirm earlier findings that different mineralogies do not require different calibration equations and that cleaning procedures, method of pressure baseline correction, and mass spectrometer type do not affect interlaboratory agreement. We also present new estimates of the temperature dependence of the acid digestion fractionation for Δ47(Δ*25‐X), based on combining reprocessed data from four studies, and new theoretical equilibrium values to be used in calculation of the empirical transfer function. Overall, we have ruled out a number of possible causes of interlaboratory disagreement in the T‐Δ47relationship, but many more remain to be investigated.

     
    more » « less
  5. Abstract

    Stable isotope‐based reconstructions of past ocean salinity and hydroclimate depend on accurate, regionally constrained relationships between the stable oxygen isotopic composition of seawater (δ18Osw) and salinity in the surface ocean. An increasing number of δ18Oswobservations suggest greater spatial variability in this relationship than previously considered, highlighting the need to reassess these relationships on a global scale. Here, we use available, paired δ18Oswand salinity data (N = 11,119) to create global interpolations of each variable. We then use a self‐organizing map, a specialized form of machine learning, to define 19 regions with unique δ18Osw‐salinity relationships in the surface (<50 m) ocean. Inclusion of atmospheric moisture‐related variables and oceanic tracer data in additional self‐organizing map experiments indicates global surface δ18Osw‐salinity spatial patterns are strongly forced by the atmosphere, as the SOM spatial output is highly similar despite no overlapping input data. Our approach is a useful update to the previously delimited regions, and highlights the utility of neural network pattern extraction in spatiotemporally sparse data sets.

     
    more » « less