Quasar–galaxy pairs at small separations are important probes of gas flows in the disc–halo interface in galaxies. We study host galaxies of 198 Mg ii absorbers at 0.39 ≤ zabs ≤ 1.05 that show detectable nebular emission lines in the Sloan Digital Sky Survey (SDSS) spectra. We report measurements of impact parameter (5.9 ≤ D [kpc] ≤ 16.9) and absolute B-band magnitude (−18.7 ≤ MB ≤ −22.3 mag) of host galaxies of 74 of these absorbers using multiband images from the Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Survey, more than doubling the number of known host galaxies with D ≤ 17 kpc. This has allowed us to quantify the relationship between Mg ii rest equivalent width (W2796) and D, with best-fitting parameters of W2796 (D = 0) = 3.44 ± 0.20 Å and an exponential scale length of 21.6$^{+2.41}_{-1.97}\, \mathrm{ kpc}$. We find a significant anticorrelation between MB and D, and MB and W2796, consistent with the brighter galaxies producing stronger Mg ii absorption. We use stacked images to detect average emissions from galaxies in the full sample. Using these images and stacked spectra, we derive the mean stellar mass (9.4 ≤ log(M*/M⊙) ≤ 9.8), star formation rate (2.3 ≤ SFR [M⊙ yr−1] ≤ 4.5), age (2.5–4 Gyr), metallicity (12 + log(O/H) ∼ 8.3), and ionization parameter (log q [cm s−1] ∼ 7.7) for these galaxies. The average M* found is less than that of Mg ii absorbers studied in the literature. The average SFR and metallicity inferred are consistent with that expected in the main sequence and the known stellar mass–metallicity relation, respectively. High spatial resolution follow-up spectroscopic and imaging observations of this sample are imperative for probing gas flows close to the star-forming regions of high-z galaxies.
Quasar absorption line analysis is critical for studying gas and dust components and their physical and chemical properties as well as the evolution and formation of galaxies in the early universe. Calcium II (Ca ii) absorbers, which are one of the dustiest absorbers and are located at lower redshifts than most other absorbers, are especially valuable when studying physical processes and conditions in recent galaxies. However, the number of known quasar Ca ii absorbers is relatively low due to the difficulty of detecting them with traditional methods. In this work, we developed an accurate and quick approach to search for Ca ii absorption lines using deep learning. In our deep learning model, a convolutional neural network, tuned using simulated data, is used for the classification task. The simulated training data are generated by inserting artificial Ca ii absorption lines into original quasar spectra from the Sloan Digital Sky Survey (SDSS), while an existing Ca ii catalogue is adopted as the test set. The resulting model achieves an accuracy of 96 per cent on the real data in the test set. Our solution runs thousands of times faster than traditional methods, taking a fraction of a second to analyse thousands of quasars, while traditional methods may take days to weeks. The trained neural network is applied to quasar spectra from SDSS’s DR7 and DR12 and discovered 399 new quasar Ca ii absorbers. In addition, we confirmed 409 known quasar Ca ii absorbers identified previously by other research groups through traditional methods.
more » « less- PAR ID:
- 10379331
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 517
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 4902-4915
- Size(s):
- p. 4902-4915
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT We report discoveries of 165 new quasar Ca ii absorbers from the Sloan Digital Sky Survey (SDSS) Data Releases 7 and 12. Our ca ii rest-frame equivalent width distribution supports the weak and strong subpopulations, split at ${W}^{\lambda 3934}_{0}=0.7$ Å. Comparison of both populations’ dust depletion shows clear consistency for weak absorber association with halo-type gas in the Milky Way (MW), while strong absorbers have environments consistent with halo and disc-type gas. We probed our high-redshift Ca ii absorbers for 2175 Å dust bumps, discovering 12 2175 Å dust absorbers (2DAs). This clearly shows that some Ca ii absorbers follow the Large Magellanic Cloud (LMC) extinction law rather than the Small Magellanic Cloud extinction law. About 33 per cent of our strong Ca ii absorbers exhibit the 2175 Å dust bump, while only 6 per cent of weak Ca ii absorbers show this bump. 2DA detection further supports the theory that strong Ca ii absorbers are associated with disc components and are dustier than the weak population. Comparing average Ca ii absorber dust depletion patterns to that of Damped Ly α absorbers (DLAs), Mg ii absorbers, and 2DAs shows that Ca ii absorbers generally have environments with more dust than DLAs and Mg ii absorbers, but less dust than 2DAs. Comparing 2175 Å dust bump strengths from different samples and also the MW and LMC, the bump strength appears to grow stronger as the redshift decreases, indicating dust growth and the global chemical enrichment of galaxies in the Universe over time.
-
ABSTRACT C i absorbers play an important role as indicators for exploring the presence of cold gas in the interstellar medium of galaxies. However, the current data base of C i absorbers is very limited due to their weak absorption feature and rarity. Here, we report results from a search of C i λλ1560, 1656 absorption lines using Mg ii absorbers as signposts with modified deep learning algorithms, which provides a very quick way to search for weak C i absorber candidates. A total of 107 C i absorbers were detected, which nearly doubles the size of previously known samples. In addition, we found 17 C i absorbers to be associated with 2175 Å dust absorbers (2DAs), i.e. about 16 per cent C i absorbers are associated with 2DAs. Comparing the average dust depletion patterns of C i absorbers with those of damped Lyman α absorbers (DLAs), Mg ii absorbers, Ca ii absorbers, and 2175 Å dust absorbers (2DAs) shows that C i absorbers generally have environments with more dust than DLAs, Mg ii, and Ca ii absorbers, but similar to dust in 2DAs. Similarity between the dust depletion pattern of C i absorbers to that of the warm disc in the Milky Way indicates that C i absorption clouds are possibly associated with disc components in distant galaxies. Therefore, C i absorbers are confirmed to be excellent probes to trace cold gas and dust in the Universe.
-
ABSTRACT Intervening metal absorbers in quasar spectra at z > 6 can be used as probes to study the chemical enrichment of the Universe during the Epoch of Reionization. This work presents the comoving line densities (dn/dX) of low-ionization absorbers, namely, Mg ii (2796 Å), C ii (1334 Å), and O i (1302 Å) across 2 < z < 6 using the E-XQR-30 metal absorber catalogue prepared from 42 XSHOOTER quasar spectra at 5.8 < z < 6.6. Here, we analyse 280 Mg ii (1.9 < z < 6.4), 22 C ii (5.2 < z < 6.4), and 10 O i (5.3 < z < 6.4) intervening absorbers, thereby building up on previous studies with improved sensitivity of 50 per cent completeness at an equivalent width of W > 0.03 Å. For the first time, we present the comoving line densities of 131 weak (W < 0.3 Å) intervening Mg ii absorbers at 1.9 < z < 6.4 which exhibit constant evolution with redshift similar to medium (0.3 < W < 1.0 Å) absorbers. However, the cosmic mass density of Mg ii – dominated by strong Mg ii systems – traces the evolution of global star formation history from redshift 1.9 to 5.5. E-XQR-30 also increases the absorption path-length by a factor of 50 per cent for C ii and O i whose line densities show a rising trend towards z > 5, in agreement with previous works. In the context of a decline in the metal enrichment of the Universe at z > 5, the overall evolution in the incidence rates of absorption systems can be explained by a weak – possibly soft fluctuating – ultraviolet background. Our results, thereby, provide evidence for a late reionization continuing to occur in metal-enriched and therefore, biased regions in the Universe.
-
Abstract We investigate the metal species associated with the Ly α forest in eBOSS quasar spectra. Metal absorption lines are revealed in stacked spectra from cross-correlating the selected Ly α absorbers in the forest and the flux fluctuation field. Up to 13 metal species are identified as being associated with relatively strong Ly α absorbers (those with flux fluctuations − 1.0 < δ Ly α < − 0.6 and with a neutral hydrogen column density of ∼ 10 15−16 cm −2 ) over the absorber redshift range of 2 < z abs < 4. The column densities of these species decrease toward higher redshift and for weaker Ly α absorbers. From modeling the column densities of various species, we find that the column density pattern suggests contributions from multiple gas components, both in the circumgalactic medium (CGM) and the intergalactic medium (IGM). While the low-ionization species (e.g., C ii , Si ii , and Mg ii ) can be explained by high-density, cool gas ( T ∼ 10 4 K) from the CGM, the high-ionization species may reside in low-density or high-temperature gas in the IGM. The measurements provide inputs for modeling the metal contamination in the Ly α forest baryon acoustic oscillation measurements. Comparisons with metal absorptions in high-resolution quasar spectra and hydrodynamic galaxy formation simulations can further elucidate the physical conditions of these Ly α absorbers.more » « less