skip to main content


Title: Modeling for Chemical-Etching Enhanced Pulsed Laser Ablation
Pulsed laser ablation (PLA) under active liquid confinement, also known as chemical etching enhanced pulsed laser ablation (CE-PLA), has emerged as a novel laser processing methodology, which breaks the current major limitation in underwater PLA caused by the breakdown plasma and effectively improves the efficiencies of underwater PLA-based processes, such as laser-assisted nano-/micro-machining and laser shock processing. Despite of experimental efforts, little attention has been paid on CE-PLA process modeling. In this study, an extended two-temperature model is proposed to predict the temporal/spatial evolution of the electron-lattice temperature and the ablation rate in the CE-PLA process. The model is developed with considerations on the temperature-dependent electronic thermal properties and optical properties of the target material. The ablation rate is formulated by incorporating the mutual promotion between ablation and etching processes. The simulation results are validated by the experimental data of CE-PLA of zinc under the liquid confinement of hydrogen peroxide.

 
more » « less
Award ID(s):
1825739
NSF-PAR ID:
10379359
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference
Volume:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Few‐layer black phosphorus (BP) has emerged as one of the most promising candidates for post‐silicon electronic materials due to its outstanding electrical and optical properties. However, lack of large‐scale BP thin films is still a major roadblock to further applications. The most widely used methods for obtaining BP thin films are mechanical exfoliation and liquid exfoliation. Herein, a method of directly synthesizing continuous BP thin films with the capability of patterning arbitrary shapes by employing ultrafast laser writing with confinement is reported. The physical mechanism of confined laser metaphase transformation is understood by molecular dynamics simulation. Ultrafast laser ablation of BP layer under confinement can induce transient nonequilibrium high‐temperature and high‐pressure conditions for a few picoseconds. Under optimized laser intensity, this process induces a metaphase transformation to form a crystalline BP thin film on the substrate. Raman spectroscopy, atomic force microscopy, and transmission electron microscopy techniques are utilized to characterize the morphology of the resulting BP thin films. Field‐effect transistors are fabricated on the BP films to study their electrical properties. This unique approach offers a general methodology to mass produce large‐scale patterned BP films with a one‐step manufacturing process that has the potential to be applied to other 2D materials.

     
    more » « less
  2. The generation of colloidal solutions of chemically clean nanoparticles through pulsed laser ablation in liquids (PLAL) has evolved into a thriving research field that impacts industrial applications. The complexity and multiscale nature of PLAL make it difficult to untangle the various processes involved in the generation of nanoparticles and establish the dependence of nanoparticle yield and size distribution on the irradiation parameters. Large-scale atomistic simulations have yielded important insights into the fundamental mechanisms of ultrashort (femtoseconds to tens of picoseconds) PLAL and provided a plausible explanation of the origin of the experimentally observed bimodal nanoparticle size distributions. In this paper, we extend the atomistic simulations to short (hundreds of picoseconds to nanoseconds) laser pulses and focus our attention on the effect of the pulse duration on the mechanisms responsible for the generation of nanoparticles at the initial dynamic stage of laser ablation. Three distinct nanoparticle generation mechanisms operating at different stages of the ablation process and in different parts of the emerging cavitation bubble are identified in the simulations. These mechanisms are (1) the formation of a thin transient metal layer at the interface between the ablation plume and water environment followed by its decomposition into large molten nanoparticles, (2) the nucleation, growth, and rapid cooling/solidification of small nanoparticles at the very front of the emerging cavitation bubble, above the transient interfacial metal layer, and (3) the spinodal decomposition of a part of the ablation plume located below the transient interfacial layer, leading to the formation of a large population of nanoparticles growing in a high-temperature environment through inter-particle collisions and coalescence. The coexistence of the three distinct mechanisms of the nanoparticle formation at the initial stage of the ablation process can be related to the broad nanoparticle size distributions commonly observed in nanosecond PLAL experiments. The strong dependence of the nanoparticle cooling and solidification rates on the location within the low-density metal–water mixing region has important implications for the long-term evolution of the nanoparticle size distribution, as well as for the ability to quench the nanoparticle growth or dope them by adding surface-active agents or doping elements to the liquid environment. 
    more » « less
  3. Abstract

    Pore‐scale mineral dissolution reactions are of fundamental importance for sustaining life and determining the fate of chemicals in Earth's near‐surface environments. However, experimental investigations are largely limited to macroscopic approaches due to difficulties in controlling and observing geochemical processes at the pore scale. Here, we present an experimental method using both femtosecond laser ablation and hydrofluoric (HF) etching techniques to fabricate reactive microdevices in a natural silicate mineral, anorthite. The femtosecond laser minimizes damage to the mineral during ablation and HF etching successfully removes a thin amorphous layer induced by laser irradiation. Anorthite dissolution rates under far‐from‐equilibrium conditions (10−8.14to 10−8.43 mol m−2 s−1), quantified by total calcium flux from the microfluidic device, correspond to previous laboratory‐measured rates also measured under far‐from‐equilibrium conditions, thereby supporting the reactive mineral microdevice as a valuable tool for mineral dissolution studies.

     
    more » « less
  4. null (Ed.)
    Liquid–solid interface energy transport has been a long-term research topic. Past research mostly focused on theoretical studies while there are only a handful of experimental reports because of the extreme challenges faced in measuring such interfaces. Here, by constructing nanosecond energy transport state-resolved Raman spectroscopy (nET-Raman), we characterize thermal conductance across a liquid–solid interface: water–WS 2 nm film. In the studied system, one side of a nm-thick WS 2 film is in contact with water and the other side is isolated. WS 2 samples are irradiated with 532 nm wavelength lasers and their temperature evolution is monitored by tracking the Raman shift variation in the E 2g mode at several laser powers. Steady and transient heating states are created using continuous wave and nanosecond pulsed lasers, respectively. We find that the thermal conductance between water and WS 2 is in the range of 2.5–11.8 MW m −2 K −1 for three measured samples (22, 33, and 88 nm thick). This is in agreement with molecular dynamics simulation results and previous experimental work. The slight differences are attributed mostly to the solid–liquid interaction at the boundary and the surface energies of different solid materials. Our detailed analysis confirms that nET-Raman is very robust in characterizing such interface thermal conductance. It completely eliminates the need for laser power absorption and Raman temperature coefficients, and is insensitive to the large uncertainties in 2D material properties input. 
    more » « less
  5. We demonstrate a novel approach for achieving rapid, consistent, and controllable micro-pore fabrication in single-crystalline quartz. These micro-pores are essential for applications in biology, i.e., studying ion channels in general and mechano-sensitive channels (MSC) in particular. The fabrication process consists of direct material ablation using pulsed UV light from a 193 nm excimer laser. These pulses ablate single-crystalline quartz chips by burning a laser-induced plasma in a tri-layer structure. Controllable plasma confinement and thus pore size is achieved by sandwiching a thin layer of a selected organic solution between the quartz chip and different substrates. This solution causes the confined micro-plasma to generate special ablation conditions, to create uniformly sized and shaped nanopores.

     
    more » « less