skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: WINK: Wireless Inference of Numerical Keystrokes via Zero-Training Spatiotemporal Analysis
Sensitive numbers play an unparalleled role in identification and authentication. Recent research has revealed plenty of side-channel attacks to infer keystrokes, which require either a training phase or a dictionary to build the relationship between an observed signal disturbance and a keystroke. However, training-based methods are unpractical as the training data about the victim are hard to obtain, while dictionary-based methods cannot infer numbers, which are not combined according to linguistic rules like letters are. We observe that typing a number creates not only a number of observed disturbances in space (each corresponding to a digit), but also a sequence of periods between each disturbance. Based upon existing work that utilizes inter-keystroke timing to infer keystrokes, we build a novel technique called WINK that combines the spatial and time domain information into a spatiotemporal feature of keystroke-disturbed wireless signals. With this spatiotemporal feature, WINK can infer typed numbers without the aid of any training. Experimental results on top of software-defined radio platforms show that WINK can vastly reduce the guesses required for breaking certain 6-digit PINs from 1 million to as low as 16, and can infer over 52% of user-chosen 6-digit PINs with less than 100 attempts.  more » « less
Award ID(s):
1948547
PAR ID:
10379368
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS '22)
Page Range / eLocation ID:
3033 to 3047
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Keystroke dynamics study the way in which users input text via their keyboards, which is unique to each individual, and can form a component of a behavioral biometric system to improve existing account security. Keystroke dynamics systems on free-text data use n-graphs that measure the timing between consecutive keystrokes to distinguish between users. Many algorithms require 500, 1,000, or more keystrokes to achieve EERs of below 10%. In this paper, we propose an instance-based graph comparison algorithm to reduce the number of keystrokes required to authenticate users. Commonly used features such as monographs and digraphs are investigated. Feature importance is determined and used to construct a fused classifier. Detection error tradeoff (DET) curves are produced with different numbers of keystrokes. The fused classifier outperforms the state-of-the-art with EERs of 7.9%, 5.7%, 3.4%, and 2.7% for test samples of 50, 100, 200, and 500 keystrokes. 
    more » « less
  2. Existing research work has identified a new class of attacks that can eavesdrop on the keystrokes in a non-invasive way without infecting the target computer to install malware. The common idea is that pressing a key of a keyboard can cause a unique and subtle environmental change, which can be captured and analyzed by the eavesdropper to learn the keystrokes. For these attacks, however, a training phase must be accomplished to establish the relationship between an observed environmental change and the action of pressing a specific key. This significantly limits the impact and practicality of these attacks. In this paper, we discover that it is possible to design keystroke eavesdropping attacks without requiring the training phase. We create this attack based on the channel state information extracted from the wireless signal. To eavesdrop on keystrokes, we establish a mapping between typing each letter and its respective environmental change by exploiting the correlation among observed changes and known structures of dictionary words. To defend against this attack, we propose a reactive jamming mechanism that launches the jamming only during the typing period. Experimental results on software-defined radio platforms validate the impact of the attack and the performance of the defense. 
    more » « less
  3. In this paper, we provide the first comprehensive study of user-chosen 4- and 6-digit PINs ($$\mathbf{n=1220}$$) collected on smartphones with participants being explicitly primed for device unlocking. We find that against a throttled attacker (with 10, 30, or 100 guesses, matching the smartphone unlock setting), using 6-digit PINs instead of 4-digit PINs provides little to no increase in security, and surprisingly may even decrease security. We also study the effects of blacklists, where a set of ``easy to guess'' PINs is disallowed during selection. Two such blacklists are in use today by iOS, for 4-digits (274 PINs) as well as 6-digits (2910 PINs). We extracted both blacklists compared them with four other blacklists, including a small 4-digit (27 PINs), a large 4-digit (2740 PINs), and two placebo blacklists for 4- and 6-digit PINs that always excluded the first-choice PIN. We find that relatively small blacklists in use today by iOS offer little or no benefit against a throttled guessing attack. Security gains are only observed when the blacklists are much larger, which in turn comes at the cost of increased user frustration. Our analysis suggests that a blacklist at about 10\,\% of the PIN space may provide the best balance between usability and security. 
    more » « less
  4. In various scenarios from system login to writing emails, documents, and forms, keyboard inputs carry alluring data such as passwords, addresses, and IDs. Due to commonly existing non-alphabetic inputs, punctuation, and typos, users' natural inputs rarely contain only constrained, purely alphabetic keys/words. This work studies how to reveal unconstrained keyboard inputs using auditory interfaces. Audio interfaces are not intended to have the capability of light sensors such as cameras to identify compactly located keys. Our analysis shows that effectively distinguishing the keys can require a fine localization precision level of keystroke sounds close to the range of microseconds. This work (1) explores the limits of audio interfaces to distinguish keystrokes, (2) proposes a μs-level customized signal processing and analysis-based keystroke tracking approach that takes into account the mechanical physics and imperfect measuring of keystroke sounds, (3) develops the first acoustic side-channel attack study on unconstrained keyboard inputs that are not purely alphabetic keys/words and do not necessarily follow known sequences in a given dictionary or training dataset, and (4) reveals the threats of non-line-of-sight keystroke sound tracking. Our results indicate that, without relying on vision sensors, attacks using limited-resolution audio interfaces can reveal unconstrained inputs from the keyboard with a fairly sharp and bendable "auditory eyesight." 
    more » « less
  5. Free-text keystroke is a form of behavioral biometrics which has great potential for addressing the security limitations of conventional one-time authentication by continuously monitoring the user's typing behaviors. This paper presents a new, enhanced continuous authentication approach by incorporating the dynamics of both keystrokes and wrist motions. Based upon two sets of features (free-text keystroke latency features and statistical wrist motion patterns extracted from the wrist-worn smartwatches), two one-vs-all Random Forest Ensemble Classifiers (RFECs) are constructed and trained respectively. A Dynamic Trust Model (DTM) is then developed to fuse the two classifiers' decisions and realize non-time-blocked real-time authentication. In the free-text typing experiments involving 25 human subjects, an imposter/intruder can be detected within no more than one sentence (average 56 keystrokes) with an FRR of 1.82% and an FAR of 1.94%. Compared with the scheme relying on only keystroke latency which has an FRR of 4.66%, an FAR of 17.92% and the required number of keystroke of 162, the proposed authentication system shows significant improvements in terms of accuracy, efficiency, and usability. 
    more » « less