skip to main content


Title: Conceptualizations of active learning in departments engaged in instructional change efforts

Several academic departments have increased their use of active learning to address low student success rates. However, it is unclear whether those implementing active learning have a consistent conceptualization of it. Like other educational terms, the phrase “active learning” is in danger of becoming overused and misunderstood, which puts the utility of active learning into question. This study examines 115 conceptualizations of active learning across six institutions of higher education that are infusing more active learning into their mathematics courses. We use the four pillars of inquiry-based mathematics education as a basis for analyzing these conceptualizations and compare them in two ways: by stakeholder role and by institution. Our findings show that many participants conceptualize active learning as student engagement and activities other than lecture, yet there was limited focus on the role of the teacher and content. Only eight participants mentioned issues of equity. Comparison within individual institutions shows that faculty within departments may hold common understandings of active learning. Implications of these findings include a need to develop an understanding of active learning that attends to all four pillars and is shared across departments, institutions, and disciplines.

 
more » « less
PAR ID:
10379435
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Active Learning in Higher Education
Volume:
25
Issue:
3
ISSN:
1469-7874
Format(s):
Medium: X Size: p. 355-374
Size(s):
p. 355-374
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Several studies have shown that the use of active learning strategies can help improve student success and persistence in STEM-related fields. Despite this, widespread adoption of active learning strategies is not yet a reality as institutional change can be difficult to enact. Accordingly, it is important to understand how departments in institutions of higher education can initiate and sustain meaningful change. We use interview data collected from two institutions to examine how leaders at two universities contributed to the initiation, implementation, and sustainability of active learning in undergraduate calculus and precalculus courses. At each institution, we spoke to 27 stakeholders involved in changes (including administrators, department chairs, course coordinators, instructors, and students). Our results show that the success of these changes rested on the ability of leaders to stimulate significant cultural shifts within the mathematics department. We use communities of transformation theory and the four-frame model of organization change in STEM departments in order to better understand how leaders enabled such cultural shifts. Our study highlights actions leaders may take to support efforts at improving education by normalizing the use of active learning strategies and provides potential reasons for the efficacy of such actions. These results underscore the importance of establishing flexible, distributed leadership models that attend to the cultural and operational norms of a department. Such results may inform leaders at other institutions looking to improve education in their STEM departments.

     
    more » « less
  2. Abstract Background

    It is well established in the literature that active learning instruction in introductory STEM courses results in many desired student outcomes. Yet, regular use of high-quality active learning is not the norm in many STEM departments. Using results of a national survey, we identified 16 departments where multiple instructors reported using high levels of active learning in their introductory chemistry, mathematics, or physics courses. We conducted interviews with 27 instructors in these 16 departments to better understand the characteristics of such departments.

    Results

    Using grounded theory methodology, we developed a model that highlights relevant characteristics of departments with high use of active learning instruction in their introductory courses. According to this model, there are four main, interconnected characteristics of such departments: motivated people, knowledge about active learning, opportunities, and cultures and structures that support active learning. These departments have one or more people who are motivated to promote the use of active learning. These motivated people have knowledge about active learning as well as access to opportunities to promote the use of active learning. Finally, these departments have cultures and structures that support the use of active learning. In these departments, there is a positive feedback loop that works iteratively over time, where motivated people shape cultures/structures and these cultures/structures in turn increase the number and level of commitment of the motivated people. A second positive feedback loop was found between the positive outcome of using active learning instruction and the strengthening of cultures/structures supportive of active learning.

    Conclusions

    According to the model, there are two main take-away messages for those interested in promoting the use of active learning. The first is that all four components of the model are important. A weak or missing component may limit the desired outcome. The second is that desired outcomes are obtained and strengthened over time through two positive feedback loops. Thus, there is a temporal aspect to change. In all of the departments that were part of our study, the changes took at minimum several years to enact. While our model was developed using only high-use of active learning departments and future work is needed to develop the model into a full change theory, our results do suggest that change efforts may be made more effective by increasing the robustness of the four components and the connections between them.

     
    more » « less
  3. null (Ed.)
    In spring of 2020, almost all campuses across the United States abruptly closed and shifted to remote instruction due to the COVID-19 pandemic. Students and faculty rapidly adjusted how they engaged in learning in a time of great social and economic upheaval. In this paper, we use the lens of equity-oriented student engagement to examine how computing departments facilitated student participation in educationally engaging activities during the campus closures. The National Science Foundation-funded INCLUDES Alliance, the Computing Alliance of Hispanic-Serving Institutions (CAHSI), is a network of computing departments dedicated to increasing the representation of Hispanics in computing education and careers. We present results from a survey administered in spring 2020 to over 900 CAHSI students in 14 computing departments at Hispanic-Serving Institutions and interviews with 30 faculty, department chairs, and leaders. Though students reported increased financial and mental health struggles, they reflected on the myriad ways that faculty and peers supported their learning and sustained their engagement in coursework and co-curricular opportunities. In response to the pandemic, faculty and student leaders structured supports, such as peer-led team learning sessions and student clubs, to operate effectively in remote environments to promote student engagement. 
    more » « less
  4. In contrast to the dynamic treatment of other aspects of the curriculum, and despite being at the center of chemical engineering education, laboratory experiments have remained largely unchanged for decades. To characterize the potential impact changes to laboratory courses could have, we explored student perceptions across a department and characterized the kinds of opportunities students have to use their agency in these courses across universities. We used a survey to measure students’ sense of agency across several laboratory courses in a chemical engineering department. We found students in laboratory courses across the chemical engineering laboratory sequence, including those engaged in authentic course-based research did not perceive the experiments as agentive or authentic. We infer students draw upon abundant low-agency experiences in laboratory experiments. We report on the agency that instructors report students possessing across two chemical engineering departments to understand variation across institutions. Maximizing learning in laboratory courses may hinge on clearer communication about authentic experiments or systematic redesign of earlier courses. 
    more » « less
  5. Abstract Background

    An instructor’s conceptions of teaching and learning contribute to the establishment of learning environments that may benefit or hinder student learning. Previous studies have defined the continuum of teaching and learning conceptions, ranging from limited to complete, as well as the instructional practices that they help to inform (instructor-centered to student-centered), and the corresponding learning environments that these conceptions and practices establish, ranging from traditional to student-centered. Using the case of one STEM department at a research-intensive, minority serving institution, we explored faculty’s conceptions of teaching and learning and their resulting instructional practices, as well as uncovered their perspectives on the intradepartmental faculty interactions related to teaching. The study participants were drawn from both teaching-focused (called Professors of Teaching, PoTs) and traditional research (whom we call Research Professors, RPs) tenure-track faculty lines to identify whether differences existed amongst these two populations. We used interviews to explore faculty conceptions and analyzed syllabi to unveil how these conceptions shape instructional environments.

    Results

    Overall, PoTs exhibited complete conceptions of teaching and learning that emphasized student ownership of learning, whereas RPs possessed intermediate conceptions that focused more on transmitting knowledge and helping students prepare for subsequent courses. While both PoTs and RPs self-reported the use of active learning pedagogies, RPs were more likely to also highlight the importance of traditional lecture. The syllabi analysis revealed that PoTs enacted more student-centered practices in their classrooms compared to RPs. PoTs appeared to be more intentionally available to support students outside of class and encouraged student collaboration, while RPs focused more on the timeliness of assessments and enforcing more instructor-centered approaches in their courses. Finally, the data indicated that RPs recognized PoTs as individuals who were influential on their own teaching conceptions and practices.

    Conclusions

    Our findings suggest that departments should consider leveraging instructional experts who also possess a disciplinary background (PoTs) to improve their educational programs, both due to their student-centered impacts on the classroom environment and positive influence on their colleagues (RPs). This work also highlights the need for higher education institutions to offer appropriate professional development resources to enable faculty to reflect on their teaching and learning conceptions, aid in their pedagogical evolution, and guide the implementation of these conceptions into practice.

     
    more » « less