skip to main content


Title: Inferring the Intermediate-mass Black Hole Number Density from Gravitational-wave Lensing Statistics
Abstract

The population properties of intermediate-mass black holes remain largely unknown, and understanding their distribution could provide a missing link in the formation of supermassive black holes and galaxies. Gravitational-wave observations can help fill in the gap from stellar mass black holes to supermassive black holes with masses between ∼100–104M. In our work, we propose a new method for examining lens populations through lensing statistics of gravitational waves, here focusing on inferring the number density of intermediate-mass black holes through hierarchical Bayesian inference. Simulating ∼200 lensed gravitational-wave signals, we find that existing gravitational-wave observatories at their design sensitivity could either constrain the number density of 106Mpc−3within a factor of 10, or place an upper bound of ≲104Mpc−3if the true number density is 103Mpc−3. More broadly, our method leaves room for incorporation of additional lens populations, providing a general framework for probing the population properties of lenses in the universe.

 
more » « less
Award ID(s):
1836814
NSF-PAR ID:
10484897
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
932
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L4
Size(s):
["Article No. L4"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Intermediate-mass black holes (IMBHs) are the missing link between stellar-mass and supermassive black holes, widely believed to reside in at least some dense star clusters, but not yet observed directly. Tidal disruptions of white dwarfs (WDs) are luminous only for black holes less massive than ∼105M, therefore providing a unique smoking gun that could finally prove the existence of IMBHs beyond any reasonable doubt. Here, we investigate the tidal captures of WDs by IMBHs in dense star clusters, and estimate upper limits to the capture rates of ∼1 Myr−1for galactic nuclei and ∼0.01 Myr−1for globular clusters. Following the capture, the WD inspirals onto the IMBH, producing gravitational waves detectable out to ∼100 Mpc by LISA for ∼104MIMBHs. The subsequent tidal stripping/disruption of the WD can also release bright X-ray and gamma-ray emission with luminosities of at least ≳1040erg s−1, detectable by Chandra, Swift, and upcoming telescopes, such as the Einstein Probe.

     
    more » « less
  2. Abstract

    The nanohertz gravitational wave background (GWB) is believed to be dominated by GW emission from supermassive black hole binaries (SMBHBs). Observations of several dual-active galactic nuclei (AGN) strongly suggest a link between AGN and SMBHBs, given that these dual-AGN systems will eventually form bound binary pairs. Here we develop an exploratory SMBHB population model based on empirically constrained quasar populations, allowing us to decompose the GWB amplitude into an underlying distribution of SMBH masses, SMBHB number density, and volume enclosing the GWB. Our approach also allows us to self-consistently predict the number of local SMBHB systems from the GWB amplitude. Interestingly, we find the local number density of SMBHBs implied by the common-process signal in the NANOGrav 12.5-yr data set to be roughly five times larger than previously predicted by other models. We also find that at most ∼25% of SMBHBs can be associated with quasars. Furthermore, our quasar-based approach predicts ≳95% of the GWB signal comes fromz≲ 2.5, and that SMBHBs contributing to the GWB have masses ≳108M. We also explore how different empirical galaxy–black hole scaling relations affect the local number density of GW sources, and find that relations predicting more massive black holes decrease the local number density of SMBHBs. Overall, our results point to the important role that a measurement of the GWB will play in directly constraining the cosmic population of SMBHBs, as well as their connections to quasars and galaxy mergers.

     
    more » « less
  3. Abstract

    The tidal disruption of stars by supermassive black holes (SMBHs) probes relativistic gravity. In the coming decade, the number of observed tidal disruption events (TDEs) will grow by several orders of magnitude, allowing statistical inferences of the properties of the SMBH and stellar populations. Here we analyze the probability distribution functions of the pericenter distances of stars that encounter an SMBH in the Schwarzschild geometry, where the results are completely analytic, and the Kerr metric. From this analysis we calculate the number of observable TDEs, defined to be those that come within the tidal radiusrtbut outside the direct capture radius (which is, in general, larger than the horizon radius). We find that relativistic effects result in a steep decline in the number of stars that have pericenter distancesrp≲ 10rg, whererg=GM/c2, and that for maximally spinning SMBHs the distribution function ofrpat such distances scales asfrprp4/3, or in terms ofβrt/rpscales asfββ−10/3. We find that spin has little effect on the TDE fraction until the very-high-mass end, where instead of being identically zero the rate is small (≲1% of the expected rate in the absence of relativistic effects). Effectively independent of spin, if the progenitors of TDEs reflect the predominantly low-mass stellar population and thus have masses ≲1M, we expect a substantial reduction in the rate of TDEs above 107M.

     
    more » « less
  4. ABSTRACT

    Galactic nuclei are potential hosts for intermediate-mass black holes (IMBHs), whose gravitational field can affect the motion of stars and compact objects. The absence of observable perturbations in our own Galactic Centre has resulted in a few constraints on the mass and orbit of a putative IMBH. Here, we show that the Laser Interferometer Space Antenna (LISA) can further constrain these parameters if the IMBH forms a binary with a compact remnant (a white dwarf, a neutron star, or a stellar-mass black hole), as the gravitational-wave signal from the binary will exhibit Doppler-shift variations as it orbits around Sgr A*. We argue that this method is the most effective for IMBHs with masses $10^3\, \mathrm{ M}_\odot \lesssim M_{\rm IMBH}\lesssim 10^5\, \mathrm{ M}_\odot$ and distances of 0.1–2 mpc with respect to the supermassive black hole, a region of the parameter space partially unconstrained by other methods. We show that in this region the Doppler shift is most likely measurable whenever the binary is detected in the LISA band, and it can help constrain the mass and orbit of a putative IMBH in the centre of our Galaxy. We also discuss possible ways for an IMBH to form a binary in the Galactic Centre, showing that gravitational-wave captures of stellar-mass black holes and neutron stars are the most efficient channel.

     
    more » « less
  5. Abstract

    We investigate the properties of voids and void galaxies in theTNG300simulation. Using a luminous galaxy catalog and a spherical void-finding algorithm, we identify 5078 voids at redshiftz= 0. The voids cover 83% of the simulation volume and have a median radius of 4.4h−1Mpc. We identify two populations of field galaxies based on whether the galaxies reside within a void (“void galaxies”; 75,220 objects) or outside a void (“nonvoid galaxies”; 527,454 objects). Within the voids, mass does not directly trace light. Instead, the mean radial underdensity profile as defined by the locations of void galaxies is systematically lower than the mean radial underdensity profile as defined by the dark matter (i.e., the voids are more “devoid” of galaxies than they are of mass). Within the voids, the integrated underdensity profiles of the dark matter and the galaxies are independent of the local background density (i.e., voids-in-voids versus voids-in-clouds). Beyond the void radii, however, the integrated underdensity profiles of both the dark matter and the galaxies exhibit strong dependencies on the local background density. Compared to nonvoid galaxies, void galaxies are on average younger, less massive, bluer in color, less metal enriched, and have smaller radii. In addition, the specific star formation rates of void galaxies are ∼20% higher than nonvoid galaxies and, in the case of galaxies with central supermassive black holes withMBH≳ 3 × 106h−1M, the fraction of active void galaxies is ∼25% higher than active nonvoid galaxies.

     
    more » « less