skip to main content


Title: Fabrication of three-dimensional opal nanolattices using template-directed colloidal assembly

Three-dimensional (3D) nanostructures play a crucial role in nanophotonics, lasers, and optical systems. This article reports on the fabrication of 3D nanostructures consisting of opal structures that are spatially aligned to an array of holes defined in the photoresist. The proposed method uses colloidal lithography to pattern a hexagonal array of holes, which are then used to direct the subsequent 3D assembly of colloidal particles. This approach allows the 3D opal structures to be aligned with the 2D array of holes, which can enhance spatial-phase coherence and reduce defects. The polymer patterns can be used as a sacrificial template for atomic layer deposition and create free-standing nanolattices. The final structure consists of a combination of nanolattice, upon which controlled deposition of opal structures is achieved. These structures result in nanostructured materials with high porosity, which is essential to create low-index materials for nanophotonics. A thick layer of titanium oxide with high refractive index is deposited over nanolattices to demonstrate the mechanical stability of underlying structures. These nanolattice structures with precisely controlled height can serve as a low-index layer and can find applications in Bragg reflectors, nanophotonics, and optical multilayers.

 
more » « less
NSF-PAR ID:
10379479
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Vacuum Society
Date Published:
Journal Name:
Journal of Vacuum Science & Technology B
Volume:
40
Issue:
6
ISSN:
2166-2746
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The fabrication of periodic 3D nanostructures with uniform material properties has been widely investigated and is important for applications in photonics, mechanics, and energy storage. However, creating nanostructures with spatially varying lattice geometry and material composition is still largely an unexplored challenge in nanofabrication. This work presents the fabrication of non‐uniform nanolattices by patterning multiple layers of 3D nanostructures using phase shift lithography and atomic layer deposition. By controlling the processing parameters, the lattice geometry and material composition of each individual nanolattice layer can be tailored to create arbitrary material property profiles. Using the proposed method, a five‐layer nanolattice with spatially varying porosity and oxide materials has been demonstrated. This process can be used to create gradient‐index antireflection nanostructures, and a fabricated four‐layer nanolattice structure consisting of TiO2and Al2O3with gradually varying porosity reduces more than 90% of the specular reflectance from a silicon substrate. By enabling nanolattices with arbitrary profiles in physical properties, the demonstrated technique can find broad applications in nanophotonics, graded filters, energy storage systems, and nanoarchitected films.

     
    more » « less
  2. Dielectric mirrors based on Bragg reflection and photonic crystals have broad application in controlling light reflection with low optical losses. One key parameter in the design of these optical multilayers is the refractive index contrast, which controls the reflector performance. This work reports the demonstration of a high-reflectivity multilayer photonic reflector that consists of alternating layers of TiO2films and nanolattices with low refractive index. The use of nanolattices enables high-index contrast between the high- and low-index layers, allowing high reflectivity with fewer layers. The broadband reflectance of the nanolattice reflectors with one to three layers has been characterized with peak reflectance of 91.9% at 527 nm and agrees well with theoretical optical models. The high-index contrast induced by the nanolattice layer enables a normalize reflectance band of Δλ/λoof 43.6%, the broadest demonstrated to date. The proposed nanolattice reflectors can find applications in nanophotonics, radiative cooling, and thermal insulation.

     
    more » « less
  3. Abstract High-precision placement of rare-earth ions in scalable silicon-based nanostructured materials exhibiting high photoluminescence (PL) emission, photostable and polarized emission, and near-radiative-limited excited state lifetimes can serve as critical building blocks toward the practical implementation of devices in the emerging fields of nanophotonics and quantum photonics. Introduced herein are optical nanostructures composed of arrays of ultrathin silicon carbide (SiC) nanowires (NWs) that constitute scalable one-dimensional NW-based photonic crystal (NW-PC) structures. The latter are based on a novel, fab-friendly, nanofabrication process. The NW arrays are grown in a self-aligned manner through chemical vapor deposition. They exhibit a reduction in defect density as determined by low-temperature time-resolved PL measurements. Additionally, the NW-PC structures enable the positioning of erbium (Er 3+ ) ions with an accuracy of 10 nm, an improvement on the current state-of-the-art ion implantation processes, and allow strong coupling of Er 3+ ions in NW-PC. The NW-PC structure is pivotal in engineering the Er 3+ -induced 1540-nm emission, which is the telecommunication wavelength used in optical fibers. An approximately 60-fold increase in the room-temperature Er 3+ PL emission is observed in NW-PC compared to its thin-film analog in the linear pumping regime. Furthermore, 22 times increase in the Er 3+ PL intensity per number of exited Er ions in NW-PC was observed at saturation while using 20 times lower pumping power. The NW-PC structures demonstrate broadband and efficient excitation characteristics for Er 3+ , with an absorption cross-section (~2 × 10 −18 cm 2 ) two-order larger than typical benchmark values for direct absorption in rare-earth-doped quantum materials. Experimental and simulation results show that the Er 3+ PL is photostable at high pumping power and polarized in NW-PC and is modulated with NW-PC lattice periodicity. The observed characteristics from these technologically friendly nanophotonic structures provide a promising route to the development of scalable nanophotonics and formation of single-photon emitters in the telecom optical wavelength band. 
    more » « less
  4. Abstract

    Nanostructured MnO2are gaining great research interest because of their wide applications ranging from optical and electronic devices to energy storage and catalysis. However, the formation of a well‐defined MnO2coating on the surface of various colloidal objects has been challenging due to surface incompatibility. Here, we report a unique and robust surface‐initiated redox route to the controlled deposition of MnO2on colloidal particles, which can be employed to produce high‐quality hollow MnO2nanoshells and a variety of MnO2coated nanocomposites. Colloidal resorcinol formaldehyde (RF) resin spheres serve as both reducing agents and sacrificial templates to initiate the controlled deposition of MnO2on their surfaces. Further, the RF resin can also be coated on the surface of other colloidal nanostructures to allow overcoating of MnO2through the redox reaction and produce nanocomposites such as SiO2@MnO2and Au@MnO2. The size and thickness of the MnO2nanoshells can be tuned precisely to induce resonant Mie scattering, leading to bright colorations that can shift reversibly in response to the changes in the refractive index of the surroundings.

     
    more » « less
  5. Abstract

    In this work, we introduce a roll-to-roll system that can continuously print three-dimensional (3D) periodic nanostructures over large areas. This approach is based on Langmuir-Blodgett assembly of colloidal nanospheres, which diffract normal incident light to create a complex intensity pattern for near-field nanolithography. The geometry of the 3D nanostructure is defined by the Talbot effect and can be precisely designed by tuning the ratio of the nanosphere diameter to the exposure wavelength. Using this system, we have demonstrated patterning of 3D photonic crystals with a 500 nm period on a 50 × 200 mm2flexible substrate, with a system throughput of 3 mm/s. The patterning yield is quantitatively analyzed by an automated electron beam inspection method, demonstrating long-term repeatability of an up to 88% yield over a 4-month period. The inspection method can also be employed to examine pattern uniformity, achieving an average yield of up to 78.6% over full substrate areas. The proposed patterning method is highly versatile and scalable as a nanomanufacturing platform and can find application in nanophotonics, nanoarchitected materials, and multifunctional nanostructures.

     
    more » « less