Abstract The precise origin of Type Ia supernovae (SNe Ia) is unknown despite their value to numerous areas in astronomy. While it is a long-standing consensus that they arise from the explosion of a carbon/oxygen white dwarf, the exact progenitor configurations and explosion mechanisms that lead to SNe Ia are still debated. One popular theory is the double detonation, in which a helium layer, accreted from a binary companion, detonates on the surface of the primary star, leading to a converging shock-induced detonation of the underlying core. It has recently been seen in simulations that a helium-rich degenerate companion may undergo its own explosion triggered by the impact from the ejecta of the primary star. We show 2D simulations that approximate a white dwarf undergoing a double detonation, which triggers the explosion of the degenerate companion, leading to either a triple or quadruple detonation. We also present the first multidimensional radiative transfer results from the triple and quadruple detonation scenario. We find that within a range of mass configurations of the degenerate binary, the synthetic light curves and spectra of these events match observations as well as theoretical models of isolated double detonations do. Notably, double and quadruple detonations that are spectrally similar and reach the same peak brightnesses have drastically different ejecta masses and produce different amounts of Si- and Fe-group elements. Further understanding of this scenario is needed in order to determine if at least some observed SNe Ia actually originate from two stars exploding.
more »
« less
On the fate of the secondary white dwarf in double-degenerate double-detonation Type Ia supernovae
ABSTRACT The progenitor systems and explosion mechanism of Type Ia supernovae are still unknown. Currently favoured progenitors include double-degenerate systems consisting of two carbon-oxygen white dwarfs with thin helium shells. In the double-detonation scenario, violent accretion leads to a helium detonation on the more massive primary white dwarf that turns into a carbon detonation in its core and explodes it. We investigate the fate of the secondary white dwarf, focusing on changes of the ejecta and observables of the explosion if the secondary explodes as well rather than survives. We simulate a binary system of a $$1.05\, \mathrm{M_\odot }$$ and a $$0.7\, \mathrm{M_\odot }$$ carbon-oxygen white dwarf with $$0.03\, \mathrm{M_\odot }$$ helium shells each. We follow the system self-consistently from inspiral to ignition, through the explosion, to synthetic observables. We confirm that the primary white dwarf explodes self-consistently. The helium detonation around the secondary white dwarf, however, fails to ignite a carbon detonation. We restart the simulation igniting the carbon detonation in the secondary white dwarf by hand and compare the ejecta and observables of both explosions. We find that the outer ejecta at $$v~\gt ~15\, 000$$ km s−1 are indistinguishable. Light curves and spectra are very similar until $$\sim ~40 \ \mathrm{d}$$ after explosion and the ejecta are much more spherical than violent merger models. The inner ejecta differ significantly slowing down the decline rate of the bolometric light curve after maximum of the model with a secondary explosion by ∼20 per cent. We expect future synthetic 3D nebular spectra to confirm or rule out either model.
more »
« less
- Award ID(s):
- 1927130
- PAR ID:
- 10379531
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 517
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 5260-5271
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The double detonation is a widely discussed mechanism to explain Type Ia supernovae from explosions of sub-Chandrasekhar mass white dwarfs. In this scenario, a helium detonation is ignited in a surface helium shell on a carbon/oxygen white dwarf, which leads to a secondary carbon detonation. Explosion simulations predict high abundances of unburnt helium in the ejecta, however, radiative transfer simulations have not been able to fully address whether helium spectral features would form. This is because helium can not be sufficiently excited to form spectral features by thermal processes, but can be excited by collisions with non-thermal electrons, which most studies have neglected. We carry out a full non-local thermodynamic equilibrium radiative transfer simulation for an instance of a double detonation explosion model, and include a non-thermal treatment of fast electrons. We find a clear He i λ10830 feature which is strongest in the first few days after explosion and becomes weaker with time. Initially this feature is blended with the Mg ii λ10927 feature but over time separates to form a secondary feature to the blue wing of the Mg ii λ10927 feature. We compare our simulation to observations of iPTF13ebh, which showed a similar feature to the blue wing of the Mg ii λ10927 feature, previously identified as C i. Our simulation shows a good match to the evolution of this feature and we identify it as high velocity He i λ10830. This suggests that He i λ10830 could be a signature of the double detonation scenario.more » « less
-
ABSTRACT Double detonations of sub-Chandrasekhar mass white dwarfs are a promising explosion scenario for Type Ia supernovae, whereby a detonation in a surface helium shell triggers a secondary detonation in a carbon-oxygen core. Recent work has shown that low-mass helium shell models reproduce observations of normal SNe Ia. We present 3D radiative transfer simulations for a suite of 3D simulations of the double detonation explosion scenario for a range of shell and core masses. We find light curves broadly able to reproduce the faint end of the width–luminosity relation shown by SNe Ia, however, we find that all of our models show extremely red colours, not observed in normal SNe Ia. This includes our lowest mass helium shell model. We find clear Ti ii absorption features in the model spectra, which would lead to classification as peculiar SNe Ia, as well as line blanketing in some lines of sight by singly ionized Cr and Fe-peak elements. Our radiative transfer simulations show that these explosion models remain promising to explain peculiar SNe Ia. Future full non-LTE simulations may improve the agreement of these explosion models with observations of normal SNe Ia.more » « less
-
null (Ed.)Sub-Chandrasekhar mass carbon-oxygen white dwarfs with a surface helium shell have been proposed as progenitors of Type Ia supernovae (SNe Ia). If true, the resulting thermonuclear explosions should be able to account for at least some of the range of SNe Ia observables. To study this, we conducted a parameter study based on three-dimensional simulations of double detonations in carbon-oxygen white dwarfs with a helium shell, assuming different core and shell masses. An admixture of carbon to the shell and solar metallicity are included in the models. The hydrodynamic simulations were carried out using the A REPO code. This allowed us to follow the helium shell detonation with high numerical resolution, and this improves the reliability of predicted nucleosynthetic shell detonation yields. The addition of carbon to the shell leads to a lower production of 56 Ni, while including solar metallicity increases the production of intermediate mass elements. The production of higher mass elements is further shifted to stable isotopes at solar metallicity. Moreover, we find different core detonation ignition mechanisms depending on the core and shell mass configuration. This has an influence on the ejecta structure. We present the bolometric light curves predicted from our explosion simulations using the Monte Carlo radiative transfer code A RTIS and make comparisons with bolometric SNe Ia data. The bolometric light curves of our models show a range of brightnesses, which is able to account for subluminous to normal brightness SNe Ia. We show the model bolometric width-luminosity relation compared to data for a range of model viewing angles. We find that, on average, our brighter models lie within the observed data. The ejecta asymmetries produce a wide distribution of observables, which might account for outliers in the data. However, the models overestimate the extent of this compared to data. We also find that the bolometric decline rate over 40 days, Δm 40 (bol), appears systematically faster than data.more » « less
-
Abstract Double detonations of sub-Chandrasekhar-mass white dwarfs (WDs) in unstably mass-transferring double WD binaries have become one of the leading contenders to explain most Type Ia supernovae. However, past theoretical studies of the explosion process have assumed relatively ad hoc initial conditions for the helium shells in which the double detonations begin. In this work, we construct realistic C/O WDs to use as the starting points for multidimensional double detonation simulations. We supplement these with simplified one-dimensional detonation calculations to gain a physical understanding of the conditions under which shell detonations can propagate successfully. We find that C/O WDs ≲1.0M⊙, which make up the majority of C/O WDs, are born with structures that can support double detonations. More massive C/O WDs require ∼10−3M⊙of accretion before detonations can successfully propagate in their shells, but such accretion may be common in the double WD binaries that host massive WDs. Our findings strongly suggest that if the direct impact accretion stream reaches high enough temperatures and densities during mass transfer from one WD to another, the accreting WD will undergo a double detonation. Furthermore, if the companion is also a C/O WD ≲1.0M⊙, it will undergo its own double detonation when impacted by the ejecta from the first explosion. Exceptions to this outcome may explain the newly discovered class of hypervelocity supernova survivors.more » « less