skip to main content

Title: On the fate of the secondary white dwarf in double-degenerate double-detonation Type Ia supernovae

The progenitor systems and explosion mechanism of Type Ia supernovae are still unknown. Currently favoured progenitors include double-degenerate systems consisting of two carbon-oxygen white dwarfs with thin helium shells. In the double-detonation scenario, violent accretion leads to a helium detonation on the more massive primary white dwarf that turns into a carbon detonation in its core and explodes it. We investigate the fate of the secondary white dwarf, focusing on changes of the ejecta and observables of the explosion if the secondary explodes as well rather than survives. We simulate a binary system of a $1.05\, \mathrm{M_\odot }$ and a $0.7\, \mathrm{M_\odot }$ carbon-oxygen white dwarf with $0.03\, \mathrm{M_\odot }$ helium shells each. We follow the system self-consistently from inspiral to ignition, through the explosion, to synthetic observables. We confirm that the primary white dwarf explodes self-consistently. The helium detonation around the secondary white dwarf, however, fails to ignite a carbon detonation. We restart the simulation igniting the carbon detonation in the secondary white dwarf by hand and compare the ejecta and observables of both explosions. We find that the outer ejecta at $v~\gt ~15\, 000$ km s−1 are indistinguishable. Light curves and spectra are very similar until $\sim ~40 more » \ \mathrm{d}$ after explosion and the ejecta are much more spherical than violent merger models. The inner ejecta differ significantly slowing down the decline rate of the bolometric light curve after maximum of the model with a secondary explosion by ∼20 per cent. We expect future synthetic 3D nebular spectra to confirm or rule out either model.

« less
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 5260-5271
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    We present a photometric and spectroscopic analysis of the ultraluminous and slowly evolving 03fg-like Type Ia SN 2021zny. Our observational campaign starts from ∼5.3 h after explosion (making SN 2021zny one of the earliest observed members of its class), with dense multiwavelength coverage from a variety of ground- and space-based telescopes, and is concluded with a nebular spectrum ∼10 months after peak brightness. SN 2021zny displayed several characteristics of its class, such as the peak brightness (MB = −19.95 mag), the slow decline (Δm15(B) = 0.62 mag), the blue early-time colours, the low ejecta velocities, and the presence of significant unburned material above the photosphere. However, a flux excess for the first ∼1.5 d after explosion is observed in four photometric bands, making SN 2021zny the third 03fg-like event with this distinct behaviour, while its +313 d spectrum shows prominent [O i] lines, a very unusual characteristic of thermonuclear SNe. The early flux excess can be explained as the outcome of the interaction of the ejecta with $\sim 0.04\, \mathrm{M_{\odot }}$ of H/He-poor circumstellar material at a distance of ∼1012 cm, while the low ionization state of the late-time spectrum reveals low abundances of stable iron-peak elements. All our observations are in accordance with a progenitor system ofmore »two carbon/oxygen white dwarfs that undergo a merger event, with the disrupted white dwarf ejecting carbon-rich circumstellar material prior to the primary white dwarf detonation.

    « less
  2. Sub-Chandrasekhar mass carbon-oxygen white dwarfs with a surface helium shell have been proposed as progenitors of Type Ia supernovae (SNe Ia). If true, the resulting thermonuclear explosions should be able to account for at least some of the range of SNe Ia observables. To study this, we conducted a parameter study based on three-dimensional simulations of double detonations in carbon-oxygen white dwarfs with a helium shell, assuming different core and shell masses. An admixture of carbon to the shell and solar metallicity are included in the models. The hydrodynamic simulations were carried out using the A REPO code. This allowed us to follow the helium shell detonation with high numerical resolution, and this improves the reliability of predicted nucleosynthetic shell detonation yields. The addition of carbon to the shell leads to a lower production of 56 Ni, while including solar metallicity increases the production of intermediate mass elements. The production of higher mass elements is further shifted to stable isotopes at solar metallicity. Moreover, we find different core detonation ignition mechanisms depending on the core and shell mass configuration. This has an influence on the ejecta structure. We present the bolometric light curves predicted from our explosion simulations using themore »Monte Carlo radiative transfer code A RTIS and make comparisons with bolometric SNe Ia data. The bolometric light curves of our models show a range of brightnesses, which is able to account for subluminous to normal brightness SNe Ia. We show the model bolometric width-luminosity relation compared to data for a range of model viewing angles. We find that, on average, our brighter models lie within the observed data. The ejecta asymmetries produce a wide distribution of observables, which might account for outliers in the data. However, the models overestimate the extent of this compared to data. We also find that the bolometric decline rate over 40 days, Δm 40 (bol), appears systematically faster than data.« less

    Double detonations of sub-Chandrasekhar mass white dwarfs are a promising explosion scenario for Type Ia supernovae, whereby a detonation in a surface helium shell triggers a secondary detonation in a carbon-oxygen core. Recent work has shown that low-mass helium shell models reproduce observations of normal SNe Ia. We present 3D radiative transfer simulations for a suite of 3D simulations of the double detonation explosion scenario for a range of shell and core masses. We find light curves broadly able to reproduce the faint end of the width–luminosity relation shown by SNe Ia, however, we find that all of our models show extremely red colours, not observed in normal SNe Ia. This includes our lowest mass helium shell model. We find clear Ti ii absorption features in the model spectra, which would lead to classification as peculiar SNe Ia, as well as line blanketing in some lines of sight by singly ionized Cr and Fe-peak elements. Our radiative transfer simulations show that these explosion models remain promising to explain peculiar SNe Ia. Future full non-LTE simulations may improve the agreement of these explosion models with observations of normal SNe Ia.

  4. Abstract

    SN 2018aoz is a Type Ia SN with aB-band plateau and excess emission in infant-phase light curves ≲1 day after the first light, evidencing an over-density of surface iron-peak elements as shown in our previous study. Here, we advance the constraints on the nature and origin of SN 2018aoz based on its evolution until the nebular phase. Near-peak spectroscopic features show that the SN is intermediate between two subtypes of normal Type Ia: core normal and broad line. The excess emission may be attributable to the radioactive decay of surface iron-peak elements as well as the interaction of ejecta with either the binary companion or a small torus of circumstellar material. Nebular-phase limits on Hαand Heifavor a white dwarf companion, consistent with the small companion size constrained by the low early SN luminosity, while the absence of [Oi] and Heidisfavors a violent merger of the progenitor. Of the two main explosion mechanisms proposed to explain the distribution of surface iron-peak elements in SN 2018aoz, the asymmetric Chandrasekhar-mass explosion is less consistent with the progenitor constraints and the observed blueshifts of nebular-phase [Feii] and [Niii]. The helium-shell double-detonation explosion is compatible with the observed lack of C spectral features, butmore »current 1D models are incompatible with the infant-phase excess emission,BmaxVmaxcolor, and weak strength of nebular-phase [Caii]. Although the explosion processes of SN 2018aoz still need to be more precisely understood, the same processes could produce a significant fraction of Type Ia SNe that appear to be normal after ∼1 day.

    « less

    The observed diversity in Type Ia supernovae (SNe Ia) – the thermonuclear explosions of carbon–oxygen white dwarf stars used as cosmological standard candles – is currently met with a variety of explosion models and progenitor scenarios. To help improve our understanding of whether and how often different models contribute to the occurrence of SNe Ia and their assorted properties, we present a comprehensive analysis of seven nearby SNe Ia. We obtained one to two epochs of optical spectra with Gemini Observatory during the nebular phase (>200 d past peak) for each of these events, all of which had time series of photometry and spectroscopy at early times (the first ∼8 weeks after explosion). We use the combination of early- and late-time observations to assess the predictions of various models for the explosion (e.g. double-detonation, off-centre detonation, stellar collisions), progenitor star (e.g. ejecta mass, metallicity), and binary companion (e.g. another white dwarf or a non-degenerate star). Overall, we find general consistency in our observations with spherically symmetric models for SN Ia explosions, and with scenarios in which the binary companion is another degenerate star. We also present an in-depth analysis of SN 2017fzw, a member of the subgroup of SNe Ia which appear to be transitional betweenmore »the subluminous ‘91bg-like’ events and normal SNe Ia, and for which nebular-phase spectra are rare.

    « less