Abstract The evolution of complex dentitions in mammals was a major innovation that facilitated the expansion into new dietary niches, which imposed selection for tight form–function relationships. Teeth allow mammals to ingest and process food items by applying forces produced by a third-class lever system composed by the jaw adductors, the cranium, and the mandible. Physical laws determine changes in jaw adductor (biting) forces at different bite point locations along the mandible (outlever), thus, individual teeth are expected to experience different mechanical regimes during feeding. If the mammal dentition exhibits functional adaptations to mandible feeding biomechanics, then teeth are expected to have evolved to develop mechanically advantageous sizes, shapes, and positions. Here, we present bats as a model system to test this hypothesis and, more generally, for integrative studies of mammal dental diversity. We combine a field-collected dataset of bite forces along the tooth row with data on dental and mandible morphology across 30 bat species. We (1) describe, for the first time, bite force trends along the tooth row of bats; (2) use phylogenetic comparative methods to investigate relationships among bite force patterns, tooth, and mandible morphology; and (3) hypothesize how these biting mechanics patterns may relate to the developmental processes controlling tooth formation. We find that bite force variation along the tooth row is consistent with predictions from lever mechanics models, with most species having the greatest bite force at the first lower molar. The cross-sectional shape of the mandible body is strongly associated with the position of maximum bite force along the tooth row, likely reflecting mandibular adaptations to varying stress patterns among species. Further, dental dietary adaptations seem to be related to bite force variation along molariform teeth, with insectivorous species exhibiting greater bite force more anteriorly, narrower teeth and mandibles, and frugivores/omnivores showing greater bite force more posteriorly, wider teeth and mandibles. As these craniodental traits are linked through development, dietary specialization appears to have shaped intrinsic mechanisms controlling traits relevant to feeding performance.
more »
« less
Beyond Description: The Many Facets of Dental Biomechanics
Synopsis Teeth lie at the interface between an animal and its environment and, with some exceptions, act as a major component of resource procurement through food acquisition and processing. Therefore, the shape of a tooth is closely tied to the type of food being eaten. This tight relationship is of use to biologists describing the natural history of species and given the high instance of tooth preservation in the fossil record, is especially useful for paleontologists. However, correlating gross tooth morphology to diet is only part of the story, and much more can be learned through the study of dental biomechanics. We can explore the mechanics of how teeth work, how different shapes evolved, and the underlying forces that constrain tooth shape. This review aims to provide an overview of the research on dental biomechanics, in both mammalian and non-mammalian teeth, and to synthesize two main approaches to dental biomechanics to develop an integrative framework for classifying and evaluating dental functional morphology. This framework relates food material properties to the dynamics of food processing, in particular how teeth transfer energy to food items, and how these mechanical considerations may have shaped the evolution of tooth morphology. We also review advances in technology and new techniques that have allowed more in-depth studies of tooth form and function.
more »
« less
- Award ID(s):
- 1755336
- PAR ID:
- 10379534
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 60
- Issue:
- 3
- ISSN:
- 1540-7063
- Page Range / eLocation ID:
- 594 to 607
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Marine mammals have undergone a dramatic series of morphological transformations throughout their evolutionary history that facilitated their ecological transition to life in the water. Pinnipeds are a diverse clade of marine mammals that evolved from terrestrial carnivorans in the Oligocene (∼27 million years ago). However, pinnipeds have secondarily lost the dental innovations emblematic of mammalian and carnivoran feeding, such as a talonid basin or shearing carnassials. Modern pinnipeds do not masticate their prey, but can reduce prey size through chopping behavior. Typically, small prey are swallowed whole. Nevertheless, pinnipeds display a wide breadth of morphology of the post-canine teeth. We investigated the relationship between dental morphology and pinniped feeding by measuring the puncture performance of the cheek-teeth of seven extant pinniped genera. Puncture performance was measured as the maximum force and the maximum energy required to puncture a standardized prey item (Loligo sp.). We report significant differences in the puncture performance values across the seven genera, and identify three distinct categories based on cheek-teeth morphology and puncture performance: effective, ineffective and moderate puncturers. In addition, we measured the overall complexity of the tooth row using two different metrics, orientation patch count rotated (OPCR) and relief index (RFI). Neither metric of complexity predicted puncture performance. Finally, we discuss these results in the broader context of known pinniped feeding strategies and lay the groundwork for subsequent efforts to explore the ecological variation of specific dental morphologies.more » « less
-
null (Ed.)Synopsis Vertebrate dentitions are often collapsed into a few discrete categories, obscuring both potentially important functional differences between them and insight into their evolution. The terms homodonty and heterodonty typically conflate tooth morphology with tooth function, and require context-dependent subcategories to take on any specific meaning. Qualifiers like incipient, transient, or phylogenetic homodonty attempt to provide a more rigorous definition but instead highlight the difficulties in categorizing dentitions. To address these issues, we recently proposed a method for quantifying the function of dental batteries based on the estimated stress of each tooth (inferred using surface area) standardized for jaw out-lever (inferred using tooth position). This method reveals a homodonty–heterodonty functional continuum where small and large teeth work together to transmit forces to a prey item. Morphological homodonty or heterodonty refers to morphology, whereas functional homodonty or heterodonty refers to transmission of stress. In this study, we use Halichoeres wrasses to explore how a functional continuum can be used in phylogenetic analyses by generating two continuous metrics from the functional homodonty–heterodonty continuum. Here we show that functionally heterodont teeth have evolved at least 3 times in Halichoeres wrasses. There are more functionally heterodont teeth on upper jaws than on lower jaws, but functionally heterodont teeth on the lower jaws bear significantly more stress. These nuances, which have functional consequences, would be missed by binning entire dentitions into discrete categories. This analysis points out areas worth taking a closer look at from a mechanical and developmental point of view with respect to the distribution and type of heterodonty seen in different jaws and different areas of jaws. These data, on a small group of wrasses, suggest continuous dental variables can be a rich source of insight into the evolution of fish feeding mechanisms across a wider variety of species.more » « less
-
Abstract Teeth tell the tale of interactions between predator and prey. If a dental battery is made up of teeth that look similar, they are morphologically homodont, but if there is an unspecified amount of regional specialization in size or shape, they are morphologically heterodont. These are vague terms with no useful functional implication because morphological homodonty does not necessarily equal functional homodonty. Teeth that look the same may not function the same. Conical teeth are prevalent in fishes, superficially tasked with the simple job of puncture. There is a great deal of variation in the shape and placement of conical teeth. Anterior teeth may be larger than posterior ones, larger teeth may be surrounded by small ones, and patches of teeth may all have the same size and shape. Such variations suggest that conical dentitions might represent a single morphological solution for different functional problems. We are interested in the concept of homodonty and using the conical tooth as a model to differentiate between tooth shape and performance. We consider the stress that a tooth can exert on prey as stress is what causes damage. To create a statistical measure of functional homodonty, stress was calculated from measurements of surface area, position, and applied force. Functional homodonty is then defined as the degree to which teeth along the jaw all bear/exert similar stresses despite changes in shape. We find that morphologically heterodont teeth are often functionally homodont and that position is a better predictor of performance than shape. Furthermore, the arrangement of teeth affects their function, such that there is a functional advantage to having several smaller teeth surrounding a singular large tooth. We demonstrate that this arrangement of teeth is useful to grab, rather than tear, prey upon puncture, with the smaller teeth dissipating large stress forces around the larger tooth. We show that measurements of how shape affects stress distribution in response to loading give us a clearer picture of the evolution of conically shaped teeth.more » « less
-
Early detection of dental disease is crucial to prevent adverse outcomes. Today, dental X-rays are currently the most accurate gold standard for dental disease detection. Unfortunately, regular X-ray exam is still a privilege for billions of people around the world. In this paper, we ask: Can we develop a low-cost sensing system that enables dental self-examination in the comfort of one's home? This paper presents ToMoBrush, a dental health sensing system that explores using off-the-shelf sonic toothbrushes for dental condition detection. Our solution leverages the fact that a sonic toothbrush produces rich acoustic signals when in contact with teeth, which contain important information about each tooth's status. ToMoBrush extracts tooth resonance signatures from the acoustic signals to characterize the dental condition of each tooth. We further develop a data-driven signal processing pipeline to detect and discriminate different dental conditions. We evaluate ToMoBrush on 19 participants and dental-standard models for detecting common dental problems including caries, calculus, and food impaction, achieving a detection ROC-AUC of 0.90, 0.83, and 0.88 respectively. Interviews with dental experts further validate ToMoBrush's potential in enhancing at-home dental healthcare.more » « less
An official website of the United States government

