skip to main content


Title: Elucidation of Sequence–Function Relationships for an Improved Biobutanol In Vivo Biosensor in E. coli
Transcription factor (TF)–promoter pairs have been repurposed from native hosts to provide tools to measure intracellular biochemical production titer and dynamically control gene expression. Most often, native TF–promoter systems require rigorous screening to obtain desirable characteristics optimized for biotechnological applications. High-throughput techniques may provide a rational and less labor-intensive strategy to engineer user-defined TF–promoter pairs using fluorescence-activated cell sorting and deep sequencing methods (sort-seq). Based on the designed promoter library’s distribution characteristics, we elucidate sequence–function interactions between the TF and DNA. In this work, we use the sort-seq method to study the sequence–function relationship of a σ54-dependent, butanol-responsive TF–promoter pair, BmoR-PBMO derived from Thauera butanivorans, at the nucleotide level to improve biosensor characteristics, specifically an improved dynamic range. Activities of promoters from a mutagenized PBMO library were sorted based on gfp expression and subsequently deep sequenced to correlate site-specific sequences with changes in dynamic range. We identified site-specific mutations that increase the sensor output. Double mutant and a single mutant, CA(129,130)TC and G(205)A, in PBMO promoter increased dynamic ranges of 4-fold and 1.65-fold compared with the native system, respectively. In addition, sort-seq identified essential sites required for the proper function of the σ54-dependent promoter biosensor in the context of the host. This work can enable high-throughput screening methods for strain development.  more » « less
Award ID(s):
1736123
NSF-PAR ID:
10379542
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in bioengineering and biotechnology
Volume:
10
ISSN:
2296-4185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transcription factor (TF)–promoter pairs have been repurposed from native hosts to provide tools to measure intracellular biochemical production titer and dynamically control gene expression. Most often, native TF–promoter systems require rigorous screening to obtain desirable characteristics optimized for biotechnological applications. High-throughput techniques may provide a rational and less labor-intensive strategy to engineer user-defined TF–promoter pairs using fluorescence-activated cell sorting and deep sequencing methods (sort-seq). Based on the designed promoter library’s distribution characteristics, we elucidate sequence–function interactions between the TF and DNA. In this work, we use the sort-seq method to study the sequence–function relationship of a σ 54 -dependent, butanol-responsive TF–promoter pair, BmoR-P BMO derived from Thauera butanivorans , at the nucleotide level to improve biosensor characteristics, specifically an improved dynamic range. Activities of promoters from a mutagenized P BMO library were sorted based on gfp expression and subsequently deep sequenced to correlate site-specific sequences with changes in dynamic range. We identified site-specific mutations that increase the sensor output. Double mutant and a single mutant, CA(129,130)TC and G(205)A, in P BMO promoter increased dynamic ranges of 4-fold and 1.65-fold compared with the native system, respectively. In addition, sort-seq identified essential sites required for the proper function of the σ 54 -dependent promoter biosensor in the context of the host. This work can enable high-throughput screening methods for strain development. 
    more » « less
  2. null (Ed.)
    Bacterial cells alter gene expression in response to changes in population density in a process called quorum sensing (QS). In Vibrio harveyi, LuxO, a low cell density activator of sigma factor-54 (RpoN), is required for transcription of five non-coding regulatory sRNAs, Qrr1-Qrr5, which each repress translation of the master QS regulator LuxR. Vibrio parahaemolyticus, the leading cause of bacterial seafood-borne gastroenteritis, also contains five Qrr sRNAs that control OpaR (the LuxR homolog), controlling capsule polysaccharide (CPS), motility, and metabolism. We show that in a Δ luxO deletion mutant, opaR was de-repressed and CPS and biofilm were produced. However, in a Δ rpoN mutant, opaR was repressed, no CPS was produced, and less biofilm production was observed compared to wild type. To determine why opaR was repressed, expression analysis in Δ luxO showed all five qrr genes were repressed, while in Δ rpoN the qrr2 gene was significantly de-repressed. Reporter assays and mutant analysis showed Qrr2 sRNA can act alone to control OpaR. Bioinformatics analysis identified a sigma-70 (RpoD) -35 -10 promoter overlapping the canonical sigma-54 (RpoN) -24 -12 promoter in the qrr2 regulatory region. The qrr2 sigma-70 promoter element was also present in additional Vibrio species indicating it is widespread. Mutagenesis of the sigma-70 -10 promoter site in the Δ rpoN mutant background, resulted in repression of qrr2. Analysis of qrr quadruple deletion mutants, in which only a single qrr gene is present, showed that only Qrr2 sRNA can act independently to regulate opaR . Mutant and expression data also demonstrated that RpoN and the global regulator, Fis, act additively to repress qrr2 . Our data has uncovered a new mechanism of qrr expression and shows that Qrr2 sRNA is sufficient for OpaR regulation. Importance The quorum sensing non-coding sRNAs are present in all Vibrio species but vary in number and regulatory roles among species. In the Harveyi clade, all species contain five qrr genes, and in V. harveyi these are transcribed by sigma-54 and are additive in function. In the Cholerae clade, four qrr genes are present, and in V. cholerae the qrr genes are redundant in function. In V. parahaemolyticus , qrr2 is controlled by two overlapping promoters. In an rpoN mutant, qrr2 is transcribed from a sigma-70 promoter that is present in all V. parahaemolyticus strains and in other species of the Harveyi clade suggesting a conserved mechanism of regulation. Qrr2 sRNA can function as the sole Qrr sRNA to control OpaR. 
    more » « less
  3.  
    more » « less
  4. ABSTRACT Transcriptional reporters are common tools for analyzing either the transcription of a gene of interest or the activity of a specific transcriptional regulator. Unfortunately, the latter application has the shortcoming that native promoters did not evolve as optimal readouts for the activity of a particular regulator. We sought to synthesize an optimized transcriptional reporter for assessing PhoB activity, aiming for maximal “on” expression when PhoB is active, minimal background in the “off” state, and no control elements for other regulators. We designed specific sequences for promoter elements with appropriately spaced PhoB-binding sites, and at 19 additional intervening nucleotide positions for which we did not predict sequence-specific effects, the bases were randomized. Eighty-three such constructs were screened in Vibrio fischeri , enabling us to identify bases at particular randomized positions that significantly correlated with high-level “on” or low-level “off” expression. A second round of promoter design rationally constrained 13 additional positions, leading to a reporter with high-level PhoB-dependent expression, essentially no background, and no other known regulatory elements. As expressed reporters, we used both stable and destabilized variants of green fluorescent protein (GFP), the latter of which has a half-life of 81 min in V. fischeri . In culture, PhoB induced the reporter when phosphate was depleted to a concentration below 10 μM. During symbiotic colonization of its host squid, Euprymna scolopes , the reporter indicated heterogeneous phosphate availability in different light-organ microenvironments. Finally, testing this construct in other members of the Proteobacteria demonstrated its broader utility. The results illustrate how a limited ability to predict synthetic promoter-reporter performance can be overcome through iterative screening and reengineering. IMPORTANCE Transcriptional reporters can be powerful tools for assessing when a particular regulator is active; however, native promoters may not be ideal for this purpose. Optimal reporters should be specific to the regulator being examined and should maximize the difference between the “on” and “off” states; however, these properties are distinct from the selective pressures driving the evolution of natural promoters. Synthetic promoters offer a promising alternative, but our understanding often does not enable fully predictive promoter design, and the large number of alternative sequence possibilities can be intractable. In a synthetic promoter region with over 34 billion sequence variants, we identified bases correlated with favorable performance by screening only 83 candidates, allowing us to rationally constrain our design. We thereby generated an optimized reporter that is induced by PhoB and used it to explore the low-phosphate response of V. fischeri . This promoter design strategy will facilitate the engineering of other regulator-specific reporters. 
    more » « less
  5. Dynamic, multi-input gene regulatory networks are ubiquitous in nature. Multi-layer CRISPR-based genetic circuits hold great promise for building gene regulatory networks akin to those found in naturally-occurring biological systems. We develop an approach for creating high-performing activatable promoters that can be assembled into deep, wide, and multi-input CRISPR-activation and -interference (CRISPRa/i) gene regulatory networks. By integrating sequence-based design and in-vivo screening, we engineer activatable promoters that achieve up to 1000-fold dynamic range in an E. coli-based cell-free system. These new components enable CRISPRa gene regulatory networks that are six layers deep and four branches wide. We show the generalizability of the promoter engineering workflow by improving the dynamic range of the light-dependent EL222 optogenetic system from 6-fold to 34-fold. Additionally, high dynamic range promoters enable CRISPRa systems mediated by small molecules and protein-protein interactions. We apply these tools to build input-responsive CRISPRa/i gene regulatory networks, including feedback loops, logic gates, multi-layer cascades, and dynamic pulse modulators. Our work provides a generalizable approach for the design of high dynamic range activatable promoters and enables new classes of gene regulatory functions in cell-free systems. 
    more » « less