skip to main content


Title: The variability of brightest cluster galaxies at high radio frequencies
ABSTRACT

Variability of a galaxy’s core radio source can be a significant consequence of active galactic nucleus accretion. However, this variability has not been well studied, particularly at high radio frequencies. As such, we report on a campaign monitoring the high radio frequency variability of 20 nearby, cool-core brightest cluster galaxies. From our representative sample, we show that most vary significantly on time-scales of approximately 1 yr and longer. Our highest cadence observations are at 15 GHz and are from the Owens Valley Radio Observatory. They have a median time interval of 7 d and mostly span between 8 and 13 yr. We apply a range of variability detection techniques to the sources’ light curves to analyse changes on week to decade long time-scales. Most notably, at least half of the sources show 20 per cent peak to trough variability on 3 yr time-scales, while at least a third vary by 60 per cent on 6 yr time-scales. Significant variability, which is important to studies of the Sunyaev–Zel’dovich Effect in the radio/sub-mm, is therefore a common feature of these sources. We also show how the variability relates to spectral properties at frequencies of up to 353 GHz using data from the Korean VLBI network, the NIKA2 instrument of the IRAM 30-m telescope, and the SCUBA-2 instrument of the James Clerk Maxwell Telescope.

 
more » « less
NSF-PAR ID:
10379573
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2869-2884
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev–Zel’dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary – largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper, we present 90 GHz compact source measurements from a sample of 30 clusters observed using the MUSTANG2 instrument on the Green Bank Telescope. We present simulations of how a source’s flux density, spectral index, and angular separation from the cluster’s centre affect the measured tSZE in clusters detected by the Atacama Cosmology Telescope (ACT). By comparing the MUSTANG2 measurements with these simulations we calibrate an empirical relationship between 1.4 GHz flux densities from radio surveys and source contamination in ACT tSZE measurements. We find 3 per cent of the ACT clusters have more than a 20 per cent decrease in Compton-y but another 3 per cent have a 10 per cent increase in the Compton-y due to the matched filters used to find clusters. As sources affect the measured tSZE signal and hence the likelihood that a cluster will be detected, testing the level of source contamination in the tSZE signal using a tSZE-selected catalogue is inherently biased. We confirm this by comparing the ACT tSZE catalogue with optically and X-ray-selected cluster catalogues. There is a strong case for a large, high-resolution survey of clusters to better characterize their source population. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present a newly enlarged census of the compact radio population towards the Orion Nebula Cluster (ONC) using high-sensitivity continuum maps (3–10 $\mu$Jy beam−1) from a total of ∼30-h centimetre-wavelength observations over an area of ∼20 × 20 arcmin2 obtained in the C-band (4–8 GHz) with the Karl G. Jansky Very Large Array (VLA) in its high-resolution A-configuration. We thus complement our previous deep survey of the innermost areas of the ONC, now covering the field of view of the Chandra Orion Ultra-deep Project (COUP). Our catalogue contains 521 compact radio sources of which 198 are new detections. Overall, we find that 17 per cent of the (mostly stellar) COUP sources have radio counterparts, while 53 per cent of the radio sources have COUP counterparts. Most notably, the radio detection fraction of X-ray sources is higher in the inner cluster and almost constant for r > 3 arcmin (0.36 pc) from θ1 Ori C, suggesting a correlation between the radio emission mechanism of these sources and their distance from the most massive stars at the centre of the cluster, e.g. due to increased photoionisation of circumstellar discs. The combination with our previous observations 4 yr prior lead to the discovery of fast proper motions of up to ∼373 km s−1 from faint radio sources associated with ejecta of the OMC1 explosion. Finally, we search for strong radio variability. We found changes in flux density by a factor of ≲5 within our observations and a few sources with changes by a factor >10 on long time-scales of a few years. 
    more » « less
  3. ABSTRACT

    Studying the long-term radio variability (time-scales of months to years) of blazars enables us to gain a better understanding of the physical structure of these objects on subparsec scales, and the physics of supermassive black holes. In this study, we focus on the radio variability of 1157 blazars observed at 15 GHz through the Owens Valley Radio Observatory Blazar Monitoring Program. We investigate the dependence of the variability amplitudes and time-scales, characterized based on model fitting to the structure functions, on the milliarcsecond core sizes measured by Very Long Baseline Interferometry. We find that the most compact sources at milliarcsecond scales exhibit larger variability amplitudes and shorter variability time-scales than more extended sources. Additionally, for sources with measured redshifts and Doppler boosting factors, the correlation between linear core sizes against variability amplitudes and intrinsic time-scales is also significant. The observed relationship between variability time-scales and core sizes is expected, based on light travel-time arguments. This variability versus core size relation extends beyond the core sizes measured at 15 GHz; we see significant correlation between the 15 GHz variability amplitudes (as well as time-scales) and core sizes measured at other frequencies, which can be attributed to a frequency–source size relationship arising from the intrinsic jet structure. At low frequencies of 1 GHz where the core sizes are dominated by interstellar scattering, we find that the variability amplitudes have significant correlation with the 1 GHz intrinsic core angular sizes, once the scatter broadening effects are deconvoluted from the intrinsic core sizes.

     
    more » « less
  4. ABSTRACT

    We report on daily monitoring of the Seyfert galaxy ngc 7469, around 95 and 143 GHz, with the iram (Institut de Radioastronomie Millimetrique) 30- m radio telescope, and with the Swift X-ray and UV/optical telescopes, over an overlapping period of 45 d. The source was observed on 36 d with iram, and the flux density in both mm bands was on average ∼10 mJy, but varied by $\pm 50{{\ \rm per\ cent}}$, and by up to a factor of 2 between days. The present iram variability parameters are consistent with earlier monitoring, which had only 18 data points. The X-ray light curve of ngc 7469 over the same period spans a factor of 5 in flux with small uncertainties. Similar variability in the mm band and in the X-rays lends support to the notion of both sources originating in the same physical component of the active galactic nucleus (AGN), likely the accretion disc corona. Simultaneous monitoring in eight UV/optical bands shows much less variability than the mm and X-rays, implying this light originates from a different AGN component, likely the accretion disc itself. We use a tentative 14-d lag of the X-ray light curve with respect to the 95 GHz light curve to speculate on coronal implications. More precise mm-band measurements of a sample of X-ray-variable AGN are needed, preferably also on time-scales of less than a day where X-rays vary dramatically, in order to properly test the physical connection between the two bands.

     
    more » « less
  5. ABSTRACT

    We present a study of molecular gas, traced via CO (3–2) from Atacama Large Millimeter/submillimeter Array data, of four z < 0.2, ‘radio quiet’, type 2 quasars (Lbol ∼ 1045.3–1046.2 erg s−1; L$_{\mathrm{1.4\, GHz}}\sim 10^{23.7}\!-\!10^{24.3}$ W Hz−1). Targets were selected to have extended radio lobes (≥ 10 kpc), and compact, moderate-power jets (1–10 kpc; Pjet ∼ 1043.2–1043.7 erg s−1). All targets show evidence of central molecular outflows, or injected turbulence, within the gas discs (traced via high-velocity wing components in CO emission-line profiles). The inferred velocities (Vout = 250–440 km s−1) and spatial scales (0.6–1.6 kpc), are consistent with those of other samples of luminous low-redshift active galactic nuclei. In two targets, we observe extended molecular gas structures beyond the central discs, containing 9–53  per cent of the total molecular gas mass. These structures tend to be elongated, extending from the core, and wrap-around (or along) the radio lobes. Their properties are similar to the molecular gas filaments observed around radio lobes of, mostly ‘radio loud’, brightest cluster galaxies. They have the following: projected distances of 5–13 kpc; bulk velocities of 100–340 km s−1; velocity dispersion of 30–130 km s−1; inferred mass outflow rates of 4–20 M⊙ yr−1; and estimated kinetic powers of 1040.3–1041.7 erg s−1. Our observations are consistent with simulations that suggest moderate-power jets can have a direct (but modest) impact on molecular gas on small scales, through direct jet–cloud interactions. Then, on larger scales, jet-cocoons can push gas aside. Both processes could contribute to the long-term regulation of star formation.

     
    more » « less