skip to main content

Title: The Strain Rate Sensitivity of Heterogeneous Thin Film Metallic Glasses: Interplay Between Nanoscale Heterogeneity and Dynamic Plasticity
The dynamic mechanical properties of metallic glasses (MGs) are crucial to capturing the deformation signatures as well as for structural and functional applications. In this work, we investigate the influence of nanoscale structural heterogeneity of MGs on dynamic plasticity, focusing on the variation in strain rate sensitivity and the transition of deformation mechanisms, using a combined experimental and simulation approach. The Cu 50 Zr 50 thin-film MGs with different nanoscale heterogeneities are synthesized using magnetron sputtering and further characterized using dynamic force microscopy and nanoindentation. All the films exhibit a strain rate hardening effect, but a transition in strain rate sensitivity as the indentation rate increases has been found in the MG with a higher heterogeneity. To understand the underlying mechanisms, mesoscale shear transformation zone dynamics simulations are performed on model Cu 50 Zr 50 MGs. The simulation results are able to capture the experimental trend. Notably, the transition in strain rate sensitivity for a heterogenous MG stems from a change in deformation mechanisms: from structure-dictated strain localization at a lower strain rate to stress-dictated strain percolation into a shear band at a higher strain rate. The observed strain rate sensitivity and the corresponding mechanisms are summarized in a deformation more » mechanism map where nanoscale structural heterogeneity and strain rate are varied. We envision our study not only providing insights into the structure and property relationship of MGs on the nanoscale but also will facilitate the design of heterogeneous MGs for dynamic applications. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Frontiers in Materials
Sponsoring Org:
National Science Foundation
More Like this
  1. Among metal additive manufacturing technologies, additive friction stir deposition stands out for its ability to create freeform and fully-dense structures without melting and solidification. Here, we employ a comparative approach to investigate the process-microstructure linkages in additive friction stir deposition, utilizing two materials with distinct thermomechanical behavior—an Al-Mg-Si alloy and Cu—both of which are challenging to print using beam-based additive processes. The deposited Al-Mg-Si is shown to exhibit a relatively homogeneous microstructure with extensive subgrain formation and a strong shear texture, whereas the deposited Cu is characterized by a wide distribution of grain sizes and a weaker shear texture. We show evidence that the microstructure in Al-Mg-Si primarily evolves by continuous dynamic recrystallization, including geometric dynamic recrystallization and progressive lattice rotation, while the heterogeneous microstructure of Cu results from discontinuous recrystallization during both deposition and cooling. In Al-Mg-Si, the continuous recrystallization progresses with an increase of the applied strain, which correlates with the ratio between the tool rotation rate and travel velocity. Conversely, the microstructure evolution in Cu is found to be less dependent on , instead varying more with changes to . This difference originates from the absence of Cu rotation in the deposition zone, which reduces the influencemore »of tool rotation on strain development. We attribute the distinct process-microstructure linkages and the underlying mechanisms between Al-Mg-Si and Cu to their differences in intrinsic thermomechanical properties and interactions with the tool head.« less
  2. Abstract

    The low fracture toughness of strong covalent solids prevents them from wide engineering applications. Microalloying metal elements into covalent solids may lead to a significant improvement on mechanical properties and drastical changes on the chemical bonding. To illustrate these effects we employed density functional theory (DFT) to examine the bonding characteristic and mechanical failure of recently synthesized magnesium boride carbide (Mg3B50C8) that is formed by adding Mg into boron carbide (B4C). We found that Mg3B50C8has more metallic bonding charterer than B4C, but the atomic structure still satisfies Wade's rules. The metallic bonding significantly affects the failure mechanisms of Mg3B50C8compared with B4C. In Mg3B50C8, the B12icosahedral clusters are rotated in order to accommodate to the extensive shear strain without deconstruction. In addition, the critical failure strength of Mg3B50C8is slightly higher than that of B4C under indentation stress conditions. Our results suggested that the ductility of Mg3B50C8is drastically enhanced compared with B4C while the hardness is slightly higher than B4C.

  3. While glasses are ubiquitous in natural and manufactured materials, the atomic-level mechanisms governing their deformation and how these mechanisms relate to rheological behavior are still open questions for fundamental understanding. Using atomistic simulations spanning nearly 10 orders of magnitude in the applied strain rate we probe the atomic rearrangements associated with 3 characteristic regimes of homogeneous and heterogeneous shear flow. In the low and high strain-rate limits, simulation results together with theoretical models reveal distinct scaling behavior in flow stress variation with strain rate, signifying a nonlinear coupling between thermally activated diffusion and stress-driven motion. Moreover, we find the emergence of flow heterogeneity is closely correlated with extreme values of local strain bursts that are not readily accommodated by immediate surroundings, acting as origins of shear localization. The atomistic mechanisms underlying the flow regimes are interpreted by analyzing a distance matrix of nonaffine particle displacements, yielding evidence of various barrier-hopping processes on a fractal potential energy landscape (PEL) in which shear transformations and liquid-like regions are triggered by the interplay of thermal and stress activations.
  4. The authors recently reported that undercooled liquid Ag and Ag–Cu alloys both exhibit a first order phase transition from the homogeneous liquid (L-phase) to a heterogeneous solid-like G-phase under isothermal evolution. Here, we report a similar L–G transition and heterogenous G-phase in simulations of liquid Cu–Zr bulk glass. The thermodynamic description and kinetic features (viscosity) of the L-G-phase transition in Cu–Zr simulations suggest it corresponds to experimentally reported liquid–liquid phase transitions in Vitreloy 1 (Vit1) and other Cu–Zr-bearing bulk glass forming alloys. The Cu–Zr G-phase has icosahedrally ordered cores versus fcc/hcp core structures in Ag and Ag–Cu with a notably smaller heterogeneity length scale Λ . We propose the L–G transition is a phenomenon in metallic liquids associated with the emergence of elastic rigidity. The heterogeneous core–shell nano-composite structure likely results from accommodating strain mismatch of stiff core regions by more compliant intervening liquid-like medium.