skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carbon Capture Beyond Amines: CO 2 Sorption at Nucleophilic Oxygen Sites in Materials
Abstract Carbon capture and utilization or sequestration and direct air capture will be needed to reduce atmospheric levels of greenhouse gases over the next century. Current amine‐based technologies bind CO2with high selectivities but suffer from poor oxidative and thermal stabilities. Herein, we discuss understudied sorbents based on oxygen nucleophiles, including metal oxides and hydroxides, hydroxide‐containing polymers, and hydroxide‐based metal–organic frameworks. In general, these materials display improved oxidative stabilities compared to traditional amine‐based sorbents. We outline the challenges and opportunities offered by these alternative sorbents for carbon capture applications.  more » « less
Award ID(s):
2047627
PAR ID:
10379725
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemNanoMat
Volume:
9
Issue:
1
ISSN:
2199-692X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Carbon capture and sequestration (CCS) from industrial point sources and direct air capture are necessary to combat global climate change. A particular challenge faced by amine‐based sorbents—the current leading technology—is poor stability towards O2. Here, we demonstrate that CO2chemisorption in γ‐cylodextrin‐based metal–organic frameworks (CD‐MOFs) occurs via HCO3formation at nucleophilic OHsites within the framework pores, rather than via previously proposed pathways. The new framework KHCO3CD‐MOF possesses rapid and high‐capacity CO2uptake, good thermal, oxidative, and cycling stabilities, and selective CO2capture under mixed gas conditions. Because of its low cost and performance under realistic conditions, KHCO3CD‐MOF is a promising new platform for CCS. More broadly, our work demonstrates that the encapsulation of reactive OHsites within a porous framework represents a potentially general strategy for the design of oxidation‐resistant adsorbents for CO2capture. 
    more » « less
  2. Abstract Carbon dioxide capture technologies are set to play a vital role in mitigating the current climate crisis. Solid‐state17O NMR spectroscopy can provide key mechanistic insights that are crucial to effective sorbent development. In this work, we present the fundamental aspects and complexities for the study of hydroxide‐based CO2capture systems by17O NMR. We perform static density functional theory (DFT) NMR calculations to assign peaks for general hydroxide CO2capture products, finding that17O NMR can readily distinguish bicarbonate, carbonate and water species. However, in application to CO2binding in two test case hydroxide‐functionalised metal‐organic frameworks (MOFs) – MFU‐4l and KHCO3‐cyclodextrin‐MOF, we find that a dynamic treatment is necessary to obtain agreement between computational and experimental spectra. We therefore introduce a workflow that leverages machine‐learning force fields to capture dynamics across multiple chemical exchange regimes, providing a significant improvement on static DFT predictions. In MFU‐4l, we parameterise a two‐component dynamic motion of the bicarbonate motif involving a rapid carbonyl seesaw motion and intermediate hydroxyl proton hopping. For KHCO3‐CD‐MOF, we combined experimental and modelling approaches to propose a new mixed carbonate‐bicarbonate binding mechanism and thus, we open new avenues for the study and modelling of hydroxide‐based CO2capture materials by17O NMR. 
    more » « less
  3. Abstract Rising anthropogenic carbon emissions have dire environmental consequences, necessitating remediative approaches, which includes use of solid sorbents. Here, aminopolymers (poly(ethylene imine) (PEI) and poly(propylene imine) (PPI)) are supported within solid mesoporous MIL‐101(Cr) to examine effects of support defect density on aminopolymer‐MOF interactions for CO2uptake and stability during uptake‐regeneration cycles. Using simulated flue gas (10 % CO2in He), MIL‐101(Cr)‐ρhigh(higher defect density) shows 33 % higher uptake capacity per gram adsorbent than MIL‐101(Cr)‐ρlow(lower defect density) at 308 K, consistent with increased availability of undercoordinated Cr adsorption sites at missing linker defects. Increasing aminopolymer weight loadings (10–50 wt.%) within MIL‐101(Cr)‐ρlowand MIL‐101(Cr)‐ρhighincreases amine efficiencies and CO2uptake capacities relative to bare MOFs, though both incur CO2diffusion limitations through confined, viscous polymer phases at higher (40–50 wt.%) loadings. Benchmarked against SBA‐15, lower polymer packing densities (PPI>PEI), weaker and less abundant van der Waals interactions between aminopolymers and pore walls, and open framework topology increase amine efficiencies. Interactions between amines and Cr defect sites incur amine efficiency losses but grant higher thermal and oxidative stability during uptake‐regeneration cycling. Finally, >25 % higher CO2uptake capacities are achieved for aminopolymer/MIL‐101(Cr)‐ρhighunder humid conditions, demonstrating promise for realistic applications. 
    more » « less
  4. Given the continuous and excessive CO 2 emission into the atmosphere from anthropomorphic activities, there is now a growing demand for negative carbon emission technologies, which requires efficient capture and conversion of CO 2 to value-added chemicals. This review highlights recent advances in CO 2 capture and conversion chemistry and processes. It first summarizes various adsorbent materials that have been developed for CO 2 capture, including hydroxide-, amine-, and metal organic framework-based adsorbents. It then reviews recent efforts devoted to two types of CO 2 conversion reaction: thermochemical CO 2 hydrogenation and electrochemical CO 2 reduction. While thermal hydrogenation reactions are often accomplished in the presence of H 2 , electrochemical reactions are realized by direct use of electricity that can be renewably generated from solar and wind power. The key to the success of these reactions is to develop efficient catalysts and to rationally engineer the catalyst–electrolyte interfaces. The review further covers recent studies in integrating CO 2 capture and conversion processes so that energy efficiency for the overall CO 2 capture and conversion can be optimized. Lastly, the review briefs some new approaches and future directions of coupling direct air capture and CO 2 conversion technologies as solutions to negative carbon emission and energy sustainability. 
    more » « less
  5. Abstract Implementing Paris Climate Accord is inhibited by the high energy consumption of the state-of-the-art CO2capture technologies due to the notoriously slow kinetics in CO2desorption step of CO2capture. To address the challenge, here we report that nanostructured TiO(OH)2as a catalyst is capable of drastically increasing the rates of CO2desorption from spent monoethanolamine (MEA) by over 4500%. This discovery makes CO2capture successful at much lower temperatures, which not only dramatically reduces energy consumption but also amine losses and prevents emission of carcinogenic amine-decomposition byproducts. The catalytic effect of TiO(OH)2is observed with Raman characterization. The stabilities of the catalyst and MEA are confirmed with 50 cyclic CO2sorption and sorption. A possible mechanism is proposed for the TiO(OH)2-catalyzed CO2capture. TiO(OH)2could be a key to the future success of Paris Climat e Accord. 
    more » « less