skip to main content

Title: IFU observations of the inner 200 pc of NGC 4546: gas rotation, non-circular motions, and ionized outflows
ABSTRACT

We present a detailed analysis of the ionized gas distribution and kinematics in the inner ∼ 200 pc of NGC 4546, host of a low-luminosity active galactic nucleus (LLAGN). Using GMOS−IFU observations, with a spectral coverage of 4736–6806 Å  and an angular resolution of 0.7 arcsec, we confirm that the nuclear emission is consistent with photoionization by an AGN, while the gas in the circumnuclear region may be ionized by hot low-mass evolved stars. The gas kinematics in the central region of NGC 4546 presents three components: (i) a disc with major axis oriented along a position angle of 43° ± 3°, counter rotating relative to the stellar disc; (ii) non-circular motions, evidenced by residual velocities of up to 60 km s−1, likely associated with a previous capture of a dwarf satellite by NGC 4546; and (iii) nuclear outflows in ionized gas, identified as a broad component (σ ∼ 320 km s−1) in the line profiles, with a mass outflow rate of $\dot{M}_{\rm out} = 0.3 \pm 0.1$ M⊙ yr−1 and a total mass of Mout = (9.2 ± 0.8) × 103 M⊙ in ionized gas, corresponding to less than 3 per cent of the total mass of ionized gas in the inner 200 pc of NGC 4546. The kinetic efficiency of the more » outflow is roughly 0.1 per cent, which is smaller than the outflow coupling efficiencies predicted by theoretical studies to AGN feedback become efficient in suppressing star formation in the host galaxy.

« less
Authors:
; ;
Publication Date:
NSF-PAR ID:
10379855
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
4
Page Range or eLocation-ID:
p. 5959-5970
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We study the gas distribution and kinematics of the inner kpc of six moderately luminous (43.43 ≤ log Lbol ≤ 44.83) nearby (0.004 ≤ z ≤ 0.014) Seyfert galaxies observed with the Near-infrared Integral Field Spectrograph (NIFS) in the J ($1.25\,\mu$m) and K ($2.2\,\mu$m) bands. We analyse the most intense emission lines detected on these spectral wavebands: [Fe ii] $1.2570\, \mu$m and Paβ, which trace the ionized gas in the partially and fully ionized regions, and $\mathrm{ H}_2 \ 2.1218\, \mu$m, which traces the hot (∼2000 K) molecular gas. The dominant kinematic component is rotation in the disc of the galaxies, except for the ionized gas in NGC 5899 that shows only weak signatures of a disc component. We find ionized gas outflow in four galaxies, while signatures of H2 outflows are seen in three galaxies. The ionized gas outflows display velocities of a few hundred km s−1, and their mass outflow rates are in the range 0.005–12.49 M⊙ yr−1. Their kinetic powers correspond to 0.005–0.7 per cent of the active galactic nuclei (AGN) bolometric luminosities. Besides rotation and outflows signatures in some cases, the H2 kinematics also reveals inflows in three galaxies. The inflow velocities are 50–80 km s−1 and the mass inflow rates are in the range 1–9 × 10−4 M⊙ yr−1 formore »hot molecular gas. These inflows might be only the hot skin of the total inflowing gas, which is expected to be dominated by colder gas. The mass inflow rates are lower than the current accretion rates to the AGN, and the ionized outflows are apparently disturbing the gas in the inner kpc.

    « less
  2. ABSTRACT

    We report on our combined analysis of HST, VLT/MUSE, VLT/SINFONI, and ALMA observations of the local Seyfert 2 galaxy, NGC 5728 to investigate in detail the feeding and feedback of the active galactic nucleus (AGN). The data sets simultaneously probe the morphology, excitation, and kinematics of the stars, ionized gas, and molecular gas over a large range of spatial scales (10 pc to 10 kpc). NGC 5728 contains a large stellar bar that is driving gas along prominent dust lanes to the inner 1 kpc where the gas settles into a circumnuclear ring. The ring is strongly star forming and contains a substantial population of young stars as indicated by the lowered stellar velocity dispersion and gas excitation consistent with H ii regions. We model the kinematics of the ring using the velocity field of the CO (2–1) emission and stars and find it is consistent with a rotating disc. The outer regions of the disc, where the dust lanes meet the ring, show signatures of inflow at a rate of 1 M$\odot$ yr−1. Inside the ring, we observe three molecular gas components corresponding to the circular rotation of the outer ring, a warped disc, and the nuclear stellar bar. The AGN is driving an ionized gasmore »outflow that reaches a radius of 250 pc with a mass outflow rate of 0.08 M$\odot$ yr−1 consistent with its luminosity and scaling relations from previous studies. While we observe distinct holes in CO emission which could be signs of molecular gas removal, we find that largely the AGN is not disrupting the structure of the circumnuclear region.

    « less
  3. Abstract

    The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst–AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9–7.6μm region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Feii]λ5.34μm and [Arii]λ6.99μm lines are bright on the nucleus and in the starburst ring, as opposed to H2S(5)λ6.91μm, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mgv] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2and [Feii] ∼ 180 pc from the AGN that also show highL(H2)/L(PAH) andL([Feii])/L(Pfα) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into themore »dense interstellar medium between the nucleus and the starburst ring. These resolved mid-infrared observations of the nuclear gas dynamics demonstrate the power of JWST and its high-sensitivity integral-field spectroscopic capability to resolve feedback processes around supermassive black holes in the dusty cores of nearby luminous infrared galaxies.

    « less
  4. ABSTRACT We observed the Brackett α emission line (4.05 μm) within the nuclear starburst of NGC 253 to measure the kinematics of ionized gas, and distinguish motions driven by star formation feedback from gravitational motions induced by the central mass structure. Using NIRSPEC on Keck II, we obtained 30 spectra through a $0^{\prime \prime }_{.}5$ slit stepped across the central ∼5 arcsec × 25 arcsec (85 × 425 pc) region to produce a spectral cube. The Br α emission resolves into four nuclear sources: S1 at the infrared core (IRC), N1 at the radio core, and the fainter sources N2 and N3 in the northeast. The line profile is characterized by a primary component with Δvprimary ∼90–130 $\rm km\, s^{-1}$ (full width at half-maximum) on top of a broad blue 2wing with Δvbroad ∼300–350 $\rm km\, s^{-1}$, and an additional redshifted narrow component in the west. The velocity field generated from our cube reveals several distinct patterns. A mean NE–SW velocity gradient of +10 $\rm km\, s^{-1}$ arcsec−1 along the major axis traces the solid-body rotation curve of the nuclear disc. At the radio core, isovelocity contours become S-shaped, indicating the presence of secondary nuclear bar of total extent ∼5 arcsec (90 pc). The symmetry of the bar places the galactic centre, and potential supermassivemore »black hole, near the radio peak rather than the IRC. A third kinematic substructure is formed by blueshifted gas near the IRC. This feature likely traces a ∼100–250 $\rm km\, s^{-1}$ starburst-driven outflow, potentially linking the IRC to the galactic wind observed on kpc scales.« less
  5. ABSTRACT

    This is the fourth paper of a series investigating the AGN fuelling/feedback processes in a sample of 11 nearby low-excitation radio galaxies (LERGs). In this paper, we present follow-up Atacama Large Millimeter/submillimeter Array (ALMA) observations of one source, NGC 3100, targeting the 12CO(1-0), 12CO(3-2), HCO+(4-3), SiO(3-2), and HNCO(6-5) molecular transitions. 12CO(1-0) and 12CO(3-2) lines are nicely detected and complement our previous 12CO(2-1) data. By comparing the relative strength of these three CO transitions, we find extreme gas excitation conditions (i.e. Tex ≳ 50 K) in regions that are spatially correlated with the radio lobes, supporting the case for a jet–ISM interaction. An accurate study of the CO kinematics demonstrates that although the bulk of the gas is regularly rotating, two distinct non-rotational kinematic components can be identified in the inner gas regions: one can be associated to inflow/outflow streaming motions induced by a two-armed spiral perturbation; the second one is consistent with a jet-induced outflow with vmax ≈ 200 km s−1 and $\dot{M}\lesssim 0.12$ M⊙ yr−1. These values indicate that the jet-CO coupling ongoing in NGC 3100 is only mildly affecting the gas kinematics, as opposed to what expected from existing simulations and other observational studies of (sub-)kpc scale jet–cold gas interactions. HCO+(4-3) emission is tentatively detectedmore »in a small area adjacent to the base of the northern radio lobe, possibly tracing a region of jet-induced gas compression. The SiO(3-2) and HNCO(6-5) shock tracers are undetected: this – along with the tentative HCO+(4-3) detection – may be consistent with a deficiency of very dense (i.e. ncrit > 106 cm−3) cold gas in the central regions of NGC 3100.

    « less