We study the gas distribution and kinematics of the inner kpc of six moderately luminous (43.43 ≤ log Lbol ≤ 44.83) nearby (0.004 ≤ z ≤ 0.014) Seyfert galaxies observed with the Near-infrared Integral Field Spectrograph (NIFS) in the J ($1.25\,\mu$m) and K ($2.2\,\mu$m) bands. We analyse the most intense emission lines detected on these spectral wavebands: [Fe ii] $1.2570\, \mu$m and Paβ, which trace the ionized gas in the partially and fully ionized regions, and $\mathrm{ H}_2 \ 2.1218\, \mu$m, which traces the hot (∼2000 K) molecular gas. The dominant kinematic component is rotation in the disc of the galaxies, except for the ionized gas in NGC 5899 that shows only weak signatures of a disc component. We find ionized gas outflow in four galaxies, while signatures of H2 outflows are seen in three galaxies. The ionized gas outflows display velocities of a few hundred km s−1, and their mass outflow rates are in the range 0.005–12.49 M⊙ yr−1. Their kinetic powers correspond to 0.005–0.7 per cent of the active galactic nuclei (AGN) bolometric luminosities. Besides rotation and outflows signatures in some cases, the H2 kinematics also reveals inflows in three galaxies. The inflow velocities are 50–80 km s−1 and the mass inflow rates are in the range 1–9 × 10−4 M⊙ yr−1 for hot molecular gas. These inflows might be only the hot skin of the total inflowing gas, which is expected to be dominated by colder gas. The mass inflow rates are lower than the current accretion rates to the AGN, and the ionized outflows are apparently disturbing the gas in the inner kpc.
We present a detailed analysis of the ionized gas distribution and kinematics in the inner ∼ 200 pc of NGC 4546, host of a low-luminosity active galactic nucleus (LLAGN). Using GMOS−IFU observations, with a spectral coverage of 4736–6806 Å and an angular resolution of 0.7 arcsec, we confirm that the nuclear emission is consistent with photoionization by an AGN, while the gas in the circumnuclear region may be ionized by hot low-mass evolved stars. The gas kinematics in the central region of NGC 4546 presents three components: (i) a disc with major axis oriented along a position angle of 43° ± 3°, counter rotating relative to the stellar disc; (ii) non-circular motions, evidenced by residual velocities of up to 60 km s−1, likely associated with a previous capture of a dwarf satellite by NGC 4546; and (iii) nuclear outflows in ionized gas, identified as a broad component (σ ∼ 320 km s−1) in the line profiles, with a mass outflow rate of $\dot{M}_{\rm out} = 0.3 \pm 0.1$ M⊙ yr−1 and a total mass of Mout = (9.2 ± 0.8) × 103 M⊙ in ionized gas, corresponding to less than 3 per cent of the total mass of ionized gas in the inner 200 pc of NGC 4546. The kinetic efficiency of the outflow is roughly 0.1 per cent, which is smaller than the outflow coupling efficiencies predicted by theoretical studies to AGN feedback become efficient in suppressing star formation in the host galaxy.
more » « less- PAR ID:
- 10379855
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 517
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 5959-5970
- Size(s):
- p. 5959-5970
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT We report on our combined analysis of HST, VLT/MUSE, VLT/SINFONI, and ALMA observations of the local Seyfert 2 galaxy, NGC 5728 to investigate in detail the feeding and feedback of the active galactic nucleus (AGN). The data sets simultaneously probe the morphology, excitation, and kinematics of the stars, ionized gas, and molecular gas over a large range of spatial scales (10 pc to 10 kpc). NGC 5728 contains a large stellar bar that is driving gas along prominent dust lanes to the inner 1 kpc where the gas settles into a circumnuclear ring. The ring is strongly star forming and contains a substantial population of young stars as indicated by the lowered stellar velocity dispersion and gas excitation consistent with H ii regions. We model the kinematics of the ring using the velocity field of the CO (2–1) emission and stars and find it is consistent with a rotating disc. The outer regions of the disc, where the dust lanes meet the ring, show signatures of inflow at a rate of 1 M$\odot$ yr−1. Inside the ring, we observe three molecular gas components corresponding to the circular rotation of the outer ring, a warped disc, and the nuclear stellar bar. The AGN is driving an ionized gas outflow that reaches a radius of 250 pc with a mass outflow rate of 0.08 M$\odot$ yr−1 consistent with its luminosity and scaling relations from previous studies. While we observe distinct holes in CO emission which could be signs of molecular gas removal, we find that largely the AGN is not disrupting the structure of the circumnuclear region.
-
ABSTRACT We have used Hubble Space Telescope (HST) images, SAURON Integral Field Spectroscopy (IFS), and adaptative optics assisted Gemini NIFS near-infrared K-band IFS to map the stellar and gas distribution, excitation and kinematics of the inner few kpc of the nearby edge-on S0 galaxy NGC 4111. The HST images map its ≈450 pc diameter dusty polar ring, with an estimated gas mass ≥107 M⊙. The NIFS data cube maps the inner 110 pc radius at ≈7 pc spatial resolution, revealing a ≈220 pc diameter polar ring in hot (2267 ± 166 K) molecular H2 1–0 S(1) gas embedded in the polar ring. The stellar velocity field shows disc-dominated kinematics along the galaxy plane both in the SAURON large scale and in the NIFS nuclear-scale data. The large-scale [O iii] λ5007 Å velocity field shows a superposition of two disc kinematics: one similar to that of the stars and another along the polar ring, showing non-circular motions that seem to connect with the velocity field of the nuclear H2 ring, whose kinematics indicate accelerated inflow to the nucleus. The estimated mass inflow rate is enough not only to feed an active galactic nucleus (AGN) but also to trigger circumnuclear star formation in the near future. We propose a scenario in which gas from the polar ring, which probably originated from the capture of a dwarf galaxy, is moving inwards and triggering an AGN, as supported by the local X-ray emission, which seems to be the source of the H2 1–0 S(1) excitation. The fact that we see neither near-UV nor Br γ emission suggests that the nascent AGN is still deeply buried under the optically thick dust of the polar ring.
-
ABSTRACT We present the hot molecular and warm ionized gas kinematics for 33 nearby (0.001 ≲ z ≲ 0.056) X-ray selected active galaxies using the H$_2\, 2.1218\, \mu$m and Br γ emission lines observed in the K band with the Gemini near-infrared integral field spectrograph. The observations cover the inner 0.04–2 kpc of each active galactic nucleus at spatial resolutions of 4–250 pc with a velocity resolution of σinst ≈ 20 ${\rm km\, s^{-1}}$. We find that 31 objects (94 per cent) present a kinematically disturbed region (KDR) seen in ionized gas, while such regions are observed in hot molecular gas for 25 galaxies (76 per cent). We interpret the KDR as being due to outflows with masses of 102–107 and 100–104 M⊙ for the ionized and hot molecular gas, respectively. The ranges of mass-outflow rates ($\dot{M}_{\rm out}$) and kinetic power ($\dot{E}_{\rm K}$) of the outflows are 10−3–101 M⊙ yr−1 and ∼1037–1043 erg s−1 for the ionized gas outflows, and 10−5–10−2 M⊙ yr−1 and 1035–1039 erg s−1 for the hot molecular gas outflows. The median coupling efficiency in our sample is $\dot{E}_{\mathrm{K}}/L_{\rm bol}\approx 1.8\times 10^{-3}$ and the estimated momentum fluxes of the outflows suggest they are produced by radiation-pressure in low-density environment, with possible contribution from shocks.more » « less
-
Abstract We present the ALMA detection of molecular outflowing gas in the central regions of NGC 4945, one of the nearest starbursts and also one of the nearest hosts of an active galactic nucleus (AGN). We detect four outflow plumes in CO J = 3 − 2 at ∼0.″3 resolution that appear to correspond to molecular gas located near the edges of the known ionized outflow cone and its (unobserved) counterpart behind the disk. The fastest and brightest of these plumes has emission reaching observed line-of-sight projected velocities of over 450 km s −1 beyond systemic, equivalent to an estimated physical outflow velocity v ≳ 600 km s −1 for the fastest emission. Most of these plumes have corresponding emission in HCN or HCO + J = 4 − 3. We discuss a kinematic model for the outflow emission where the molecular gas has the geometry of the ionized gas cone and shares the rotation velocity of the galaxy when ejected. We use this model to explain the velocities we observe, constrain the physical speed of the ejected material, and account for the fraction of outflowing gas that is not detected due to confusion with the galaxy disk. We estimate a total molecular mass outflow rate M ̇ mol ∼ 20 M ⊙ yr −1 flowing through a surface within 100 pc of the disk midplane, likely driven by a combination of the central starburst and AGN.more » « less