Type-safe languages improve application safety by eliminating whole classes of vulnerabilities–such as buffer overflows–by construction. However, this safety sometimes comes with a performance cost. As a result, many modern type-safe languages provide escape hatches that allow developers to manually bypass them. The relative value of performance to safety and the degree of performance obtained depends upon the application context, including user goals and the hardware upon which the application is to be executed. Since libraries may be used in many different contexts, library developers cannot make safety-performance trade-off decisions appropriate for all cases. Application developers can tune libraries themselves to increase safety or performance, but this requires extra effort and makes libraries less reusable. To address this problem, we present NADER, a Rust development tool that makes applications safer by automatically transforming unsafe code into equivalent safe code according to developer preferences and application context. In end-to-end system evaluations in a given context, NADER automatically reintroduces numerous library bounds checks, in many cases making application code that uses popular Rust libraries safer with no corresponding loss in performance.
more »
« less
Deoptless: speculation with dispatched on-stack replacement and specialized continuations
Just-in-time compilation provides significant performance improvements for programs written in dynamic languages. These benefits come from the ability of the compiler to spec- ulate about likely cases and generate optimized code for these. Unavoidably, speculations sometimes fail and the opti- mizations must be reverted. In some pathological cases, this can leave the program stuck with suboptimal code. In this paper we propose deoptless, a technique that replaces deopti- mization points with dispatched specialized continuations. The goal of deoptless is to take a step towards providing users with a more transparent performance model in which mysterious slowdowns are less frequent and grave.
more »
« less
- PAR ID:
- 10379896
- Date Published:
- Journal Name:
- ACM SIGPLAN International Conference on Programming Language Design and Implementation
- Page Range / eLocation ID:
- 749 to 761
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many web applications use databases for persistent data storage, and using Object Relational Mapping (ORM) frameworks is a common way to develop such database-backed web applications. Unfortunately, developing efficient ORM applications is challenging, as the ORM framework hides the underlying database query generation and execution. This problem is becoming more severe as these applications need to process an increasingly large amount of persistent data. Recent research has targeted specific aspects of performance problems in ORM applications. However, there has not been any systematic study to identify common performance anti-patterns in real-world such applications, how they affect resulting application performance, and remedies for them. In this paper, we try to answer these questions through a comprehensive study of 12 representative real-world ORM applications. We generalize 9 ORM performance anti-patterns from more than 200 performance issues that we obtain by studying their bug-tracking systems and profiling their latest versions. To prove our point, we manually fix 64 performance issues in their latest versions and obtain a median speedup of 2× (and up to 39× max) with fewer than 5 lines of code change in most cases. Many of the issues we found have been confirmed by developers, and we have implemented ways to identify other code fragments with similar issues as well.more » « less
-
Over the past few years, Large Language Models of Code (Code LLMs) have started to have a significant impact on programming practice. Code LLMs are also emerging as building blocks for research in programming languages and software engineering. However, the quality of code produced by a Code LLM varies significantly by programming language. Code LLMs produce impressive results on high-resource programming languages that are well represented in their training data (e.g., Java, Python, or JavaScript), but struggle with low-resource languages that have limited training data available (e.g., OCaml, Racket, and several others). This paper presents an effective approach for boosting the performance of Code LLMs on low-resource languages using semi-synthetic data. Our approach, called MultiPL-T, generates high-quality datasets for low-resource languages, which can then be used to fine-tune any pretrained Code LLM. MultiPL-T translates training data from high-resource languages into training data for low-resource languages in the following way. 1) We use a Code LLM to synthesize unit tests for commented code from a high-resource source language, filtering out faulty tests and code with low test coverage. 2) We use a Code LLM to translate the code from the high-resource source language to a target low-resource language. This gives us a corpus of candidate training data in the target language, but many of these translations are wrong. 3) We use a lightweight compiler to compile the test cases generated in (1) from the source language to the target language, which allows us to filter our obviously wrong translations. The result is a training corpus in the target low-resource language where all items have been validated with test cases. We apply this approach to generate tens of thousands of new, validated training items for five low-resource languages: Julia, Lua, OCaml, R, and Racket, using Python as the source high-resource language. Furthermore, we use an open Code LLM (StarCoderBase) with open training data (The Stack), which allows us to decontaminate benchmarks, train models without violating licenses, and run experiments that could not otherwise be done. Using datasets generated with MultiPL-T, we present fine-tuned versions of StarCoderBase and Code Llama for Julia, Lua, OCaml, R, and Racket that outperform other fine-tunes of these base models on the natural language to code task. We also present Racket fine-tunes for two very recent models, DeepSeek Coder and StarCoder2, to show that MultiPL-T continues to outperform other fine-tuning approaches for low-resource languages. The MultiPL-T approach is easy to apply to new languages, and is significantly more efficient and effective than alternatives such as training longer.more » « less
-
Pre-trained code language models have achieved promising performance in code generation and improved the programming efficiency of human developers. However, their self-refinement capability is typically overlooked by the existing evaluations of code LMs, which focus only on the accuracy of the one-time prediction. For the cases when code LMs fail to implement the correct program, developers actually find it hard to debug and fix the faulty prediction since it is not written by the developers themselves. Unfortunately, our study reveals that code LMs cannot efficiently self-refine their faulty generations as well. In this paper, we propose CYCLE framework, learning to self-refine the faulty generation according to the available feedback, such as the execution results reported by the test suites. We evaluate CYCLE on three popular code generation benchmarks, HumanEval, MBPP, and APPS. The results reveal that CYCLE successfully maintains, sometimes improves, the quality of one-time code generation, while significantly improving the self-refinement capability of code LMs. We implement four variants of CYCLE with varied numbers of parameters across 350M, 1B, 2B, and 3B, and the experiments show that CYCLE consistently boosts the code generation performance, by up to 63.5more » « less
-
Badia, Rosa M; Mohror, Kathryn (Ed.)In contemporary high-performance computing architectures, the integration of GPU accelerators has become increasingly prevalent. To harness the full potential of these accelerators, developers often resort to vendor-specific kernel languages, such as CUDA. While this approach ensures optimal efficiency, it inherently compromises portability and engenders vendor dependency. Existing portable programming models, such as OpenMP, while promising, demand extensive code rewriting due to their foundamental difference from kernel languages. In this work, we introduce extensions to LLVM OpenMP, transforming it into a versatile and performance portable kernel language for GPU programming. These extensions allow for the seamless porting of programs from kernel languages to high-performance OpenMP GPU programs with minimal modifications. To evaluate our extension, we implemented a proof-of-concept prototype that contains a subset of extensions we proposed. We ported six established CUDA proxy and benchmark applications and evaluated their performance on both AMD and NVIDIA platforms. By comparing with native versions (HIP and CUDA), our results show that OpenMP, augmented with our extensions, can not only match but also in some cases exceed the performance of kernel languages, thereby offering performance portability with minimal effort from application developers.more » « less
An official website of the United States government

