skip to main content


Title: Infrared spectroscopy of the 2019 eruption of the recurrent nova V3890 Sgr: Separation into equatorial and polar winds revealed
ABSTRACT

We present infrared spectroscopy of the 2019 eruption of the recurrent nova V3890 Sgr, obtained over the period of 5.1–46.3 d after the eruption. The spectrum of the red giant became more prominent as the flux declined, and by day 46.3 dominated the spectrum. Hydrogen and helium emission lines consisted of a narrow component superposed on a broad pedestal. The full width at half-maximum of the narrow components declined with time t as the eruption progressed, as t−0.74, whereas those of the broad components remained essentially constant. Conversely, the line fluxes of the narrow components of Pa β remained roughly constant, while those of the broad components declined by a factor ∼30 over a period of ≲ 25 d. The behaviour of the broad components is consistent with them arising in unencumbered fast-flowing ejecta perpendicular to the binary plane, in material that was ejected in a short ∼3.3-d burst. The narrow components arise in material that encounters the accumulated circumstellar material. The outburst spectra were rich in coronal lines. There were two coronal line phases, one that originated in gas ionized by supersoft X-ray source, the other in shocked gas. From the relative fluxes of silicon and sulphur coronal lines on day 23.4 – when the emitting gas was shocked – we deduce that the temperature of the coronal gas was 9.3 × 105 K, and that the abundances are approximately solar.

 
more » « less
NSF-PAR ID:
10379917
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 6077-6090
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present photometric and spectroscopic observations of the nearby (D≈ 28 Mpc) interacting supernova (SN) 2019esa, discovered within hours of explosion and serendipitously observed by the Transiting Exoplanet Survey Satellite (TESS). Early, high-cadence light curves from both TESS and the DLT40 survey tightly constrain the time of explosion, and show a 30 day rise to maximum light followed by a near-constant linear decline in luminosity. Optical spectroscopy over the first 40 days revealed a reddened object with narrow Balmer emission lines seen in Type IIn SNe. The slow rise to maximum in the optical light curve combined with the lack of broad Hαemission suggest the presence of very optically thick and close circumstellar material (CSM) that quickly decelerated the SN ejecta. This CSM was likely created from a massive star progenitor with anṀ∼ 0.2Myr−1lost in a previous eruptive episode 3–4 yr before eruption, similar to giant eruptions of luminous blue variable stars. At late times, strong intermediate-width Caii, Fei, and Feiilines are seen in the optical spectra, identical to those seen in the superluminous interacting SN 2006gy. The strong CSM interaction masks the underlying explosion mechanism in SN 2019esa, but the combination of the luminosity, strength of the Hαlines, and mass-loss rate of the progenitor seem to be inconsistent with a Type Ia CSM model and instead point to a core-collapse origin.

     
    more » « less
  2. ABSTRACT

    We present the first intensive study of the variability of the near-infrared coronal lines in an active galactic nucleus (AGN). We use data from a 1-yr-long spectroscopic monitoring campaign with roughly weekly cadence on NGC 5548 to study the variability in both emission line fluxes and profile shapes. We find that in common with many AGN coronal lines, those studied here are both broader than the low-ionizaton forbidden lines and blueshifted relative to them, with a stratification that implies an origin in an outflow interior to the standard narrow line region. We observe for the first time [S viii] and [Si vi] coronal line profiles that exhibit broad wings in addition to narrow cores, features not seen in either [S ix] or [Si x]. These wings are highly variable, whereas the cores show negligible changes. The differences in both the profile shapes and variability properties of the different line components indicate that there are at least two coronal line regions in AGN. We associate the variable, broad wings with the base of an X-ray heated wind evaporated from the inner edge of the dusty torus. The coronal line cores may be formed at several locations interior to the narrow line region: either along this accelerating, clumpy wind or in the much more compact outflow identified with the obscurer and so emerging on scales similar to the outer accretion disc and broad-line region.

     
    more » « less
  3. ABSTRACT

    We have studied the spectral time variations of candidate luminous blue variable (cLBV) stars in two low-metallicity star-forming galaxies, DDO 68 and PHL 293B. The LBV in DDO 68, located in H ii region #3, shows an outburst, with an increase of more than 1000 times in H α luminosity during the period 2008–2010. The broad emission of the H i and He i lines display a P Cygni profile, with a relatively constant terminal velocity of ∼800 km s−1, reaching a maximum luminosity L(H α) of ∼2 × 1038 erg s−1, with a full width at half-maximum (FWHM) of ∼1000–1200 km s−1. On the other hand, since the discovery of a cLBV in 2001 in PHL 293B, the fluxes of the broad components and the broad-to-narrow flux ratios of the H i and He i emission lines in this galaxy have remained nearly constant over 16 yr, with small variations. The luminosity of the broad H α component varies between ∼2 × 1038 erg s−1 and ∼1039 erg s−1, with the FWHM varying in the range ∼500–1500 km s−1. Unusually persistent P Cygni features are clearly visible until the end of 2020 despite a decrease of the broad-to-narrow flux ratio in the most recent years. A terminal velocity of ∼800 km s−1 is measured from the P Cygni profile, similar to the one in DDO 68, although the latter is 3.7 more metal-deficient than PHL 293B. The relative constancy of the broad H α luminosity in PHL 293B suggests that it is due to a long-lived stellar transient of type LBV/SN IIn.

     
    more » « less
  4. ABSTRACT

    The central regions of galaxies harbouring active galactic nuclei (AGNs) can be quite complex, especially at high activity, presenting, besides variability, a variety of phenomena related, e.g. to ionization/excitation mechanisms. A detailed study is necessary in order to understand better those objects. For that reason, we performed a multiwavelength analysis of the nuclear region of the nearby Seyfert galaxy NGC 7314, using an optical data cube obtained with the Integral Field Unit from the Gemini Multi-Object Spectrograph, together with Hubble Space Telescope images, X-ray data from the XMM–Newton and the Nuclear Spectroscopic Telescope Array and radio data from Atacama Large Millimeter/Submillimeter Array. The goals were to study the nuclear and circumnuclear emission, the emission of the AGN and the gas kinematics. The optical spectrum shows the emission of a Seyfert nucleus, with broad components in the H α and H β emission lines, characterising a type 1 AGN, with a spectrum rich in coronal emission lines. The spatial morphology of the [O iii] λ5007 suggests the presence of an ionization cone, west of the nucleus, meanwhile the east cone seems to be obscured by dust. An extended [Fe vii] λ6087 emission was also detected, which could be possibly explained by a scenario involving photoionization + shocks mechanisms. X-rays analyses showed that there are variations in the flux; however, we did not detect any variations in the column density along the line of sight. Its variability may be a consequence of changes in the AGN accretion rate.

     
    more » « less
  5. Abstract

    We present the spatially resolved absolute brightness of the Fex, Fexi, and Fexivvisible coronal emission lines from 1.08 to 3.4R, observed during the 2019 July 2 total solar eclipse (TSE). The morphology of the corona was typical of solar minimum, with a dipole field dominance showcased by large polar coronal holes and a broad equatorial streamer belt. The Fexiline is found to be the brightest, followed by Fexand Fexiv(in diskBunits). All lines had brightness variations between streamers and coronal holes, where Fexivexhibited the largest variation. However, Fexremained surprisingly uniform with latitude. The Fe line brightnesses are used to infer the relative ionic abundances and line-of-sight-averaged electron temperature (Te) throughout the corona, yielding values from 1.25 to 1.4 MK in coronal holes and up to 1.65 MK in the core of streamers. The line brightnesses and inferredTevalues are then quantitatively compared to the Predictive Science Inc. magnetohydrodynamic model prediction for this TSE. The MHD model predicted the Fe lines rather well in general, while the forward-modeled line ratios slightly underestimated the observationally inferredTewithin 5%–10% averaged over the entire corona. Larger discrepancies in the polar coronal holes may point to insufficient heating and/or other limitations in the approach. These comparisons highlight the importance of TSE observations for constraining models of the corona and solar wind formation.

     
    more » « less