skip to main content


Title: Towards future directions in data-integrative supervised prediction of human aging-related genes
Abstract Motivation

Identification of human genes involved in the aging process is critical due to the incidence of many diseases with age. A state-of-the-art approach for this purpose infers a weighted dynamic aging-specific subnetwork by mapping gene expression (GE) levels at different ages onto the protein–protein interaction network (PPIN). Then, it analyzes this subnetwork in a supervised manner by training a predictive model to learn how network topologies of known aging- versus non-aging-related genes change across ages. Finally, it uses the trained model to predict novel aging-related gene candidates. However, the best current subnetwork resulting from this approach still yields suboptimal prediction accuracy. This could be because it was inferred using outdated GE and PPIN data. Here, we evaluate whether analyzing a weighted dynamic aging-specific subnetwork inferred from newer GE and PPIN data improves prediction accuracy upon analyzing the best current subnetwork inferred from outdated data.

Results

Unexpectedly, we find that not to be the case. To understand this, we perform aging-related pathway and Gene Ontology term enrichment analyses. We find that the suboptimal prediction accuracy, regardless of which GE or PPIN data is used, may be caused by the current knowledge about which genes are aging-related being incomplete, or by the current methods for inferring or analyzing an aging-specific subnetwork being unable to capture all of the aging-related knowledge. These findings can potentially guide future directions towards improving supervised prediction of aging-related genes via -omics data integration.

Availability and implementation

All data and code are available at zenodo, DOI: 10.5281/zenodo.6995045.

Supplementary information

Supplementary data are available at Bioinformatics Advances online.

 
more » « less
NSF-PAR ID:
10379936
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics Advances
Volume:
2
Issue:
1
ISSN:
2635-0041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Alternative splicing generates multiple isoforms from a single gene, greatly increasing the functional diversity of a genome. Although gene functions have been well studied, little is known about the specific functions of isoforms, making accurate prediction of isoform functions highly desirable. However, the existing approaches to predicting isoform functions are far from satisfactory due to at least two reasons: (i) unlike genes, isoform-level functional annotations are scarce. (ii) The information of isoform functions is concealed in various types of data including isoform sequences, co-expression relationship among isoforms, etc.

    Results

    In this study, we present a novel approach, DIFFUSE (Deep learning-based prediction of IsoForm FUnctions from Sequences and Expression), to predict isoform functions. To integrate various types of data, our approach adopts a hybrid framework by first using a deep neural network (DNN) to predict the functions of isoforms from their genomic sequences and then refining the prediction using a conditional random field (CRF) based on co-expression relationship. To overcome the lack of isoform-level ground truth labels, we further propose an iterative semi-supervised learning algorithm to train both the DNN and CRF together. Our extensive computational experiments demonstrate that DIFFUSE could effectively predict the functions of isoforms and genes. It achieves an average area under the receiver operating characteristics curve of 0.840 and area under the precision–recall curve of 0.581 over 4184 GO functional categories, which are significantly higher than the state-of-the-art methods. We further validate the prediction results by analyzing the correlation between functional similarity, sequence similarity, expression similarity and structural similarity, as well as the consistency between the predicted functions and some well-studied functional features of isoform sequences.

    Availability and implementation

    https://github.com/haochenucr/DIFFUSE.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Motivation

    Accurately representing biological networks in a low-dimensional space, also known as network embedding, is a critical step in network-based machine learning and is carried out widely using node2vec, an unsupervised method based on biased random walks. However, while many networks, including functional gene interaction networks, are dense, weighted graphs, node2vec is fundamentally limited in its ability to use edge weights during the biased random walk generation process, thus under-using all the information in the network.

    Results

    Here, we present node2vec+, a natural extension of node2vec that accounts for edge weights when calculating walk biases and reduces to node2vec in the cases of unweighted graphs or unbiased walks. Using two synthetic datasets, we empirically show that node2vec+ is more robust to additive noise than node2vec in weighted graphs. Then, using genome-scale functional gene networks to solve a wide range of gene function and disease prediction tasks, we demonstrate the superior performance of node2vec+ over node2vec in the case of weighted graphs. Notably, due to the limited amount of training data in the gene classification tasks, graph neural networks such as GCN and GraphSAGE are outperformed by both node2vec and node2vec+.

    Availability and implementation

    The data and code are available on GitHub at https://github.com/krishnanlab/node2vecplus_benchmarks. All additional data underlying this article are available on Zenodo at https://doi.org/10.5281/zenodo.7007164.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    Single-cell RNA sequencing (scRNAseq) technologies allow for measurements of gene expression at a single-cell resolution. This provides researchers with a tremendous advantage for detecting heterogeneity, delineating cellular maps or identifying rare subpopulations. However, a critical complication remains: the low number of single-cell observations due to limitations by rarity of subpopulation, tissue degradation or cost. This absence of sufficient data may cause inaccuracy or irreproducibility of downstream analysis. In this work, we present Automated Cell-Type-informed Introspective Variational Autoencoder (ACTIVA): a novel framework for generating realistic synthetic data using a single-stream adversarial variational autoencoder conditioned with cell-type information. Within a single framework, ACTIVA can enlarge existing datasets and generate specific subpopulations on demand, as opposed to two separate models [such as single-cell GAN (scGAN) and conditional scGAN (cscGAN)]. Data generation and augmentation with ACTIVA can enhance scRNAseq pipelines and analysis, such as benchmarking new algorithms, studying the accuracy of classifiers and detecting marker genes. ACTIVA will facilitate analysis of smaller datasets, potentially reducing the number of patients and animals necessary in initial studies.

    Results

    We train and evaluate models on multiple public scRNAseq datasets. In comparison to GAN-based models (scGAN and cscGAN), we demonstrate that ACTIVA generates cells that are more realistic and harder for classifiers to identify as synthetic which also have better pair-wise correlation between genes. Data augmentation with ACTIVA significantly improves classification of rare subtypes (more than 45% improvement compared with not augmenting and 4% better than cscGAN) all while reducing run-time by an order of magnitude in comparison to both models.

    Availability and implementation

    The codes and datasets are hosted on Zenodo (https://doi.org/10.5281/zenodo.5879639). Tutorials are available at https://github.com/SindiLab/ACTIVA.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Motivation

    Machine learning models for predicting cell-type-specific transcription factor (TF) binding sites have become increasingly more accurate thanks to the increased availability of next-generation sequencing data and more standardized model evaluation criteria. However, knowledge transfer from data-rich to data-limited TFs and cell types remains crucial for improving TF binding prediction models because available binding labels are highly skewed towards a small collection of TFs and cell types. Transfer prediction of TF binding sites can potentially benefit from a multitask learning approach; however, existing methods typically use shallow single-task models to generate low-resolution predictions. Here, we propose NetTIME, a multitask learning framework for predicting cell-type-specific TF binding sites with base-pair resolution.

    Results

    We show that the multitask learning strategy for TF binding prediction is more efficient than the single-task approach due to the increased data availability. NetTIME trains high-dimensional embedding vectors to distinguish TF and cell-type identities. We show that this approach is critical for the success of the multitask learning strategy and allows our model to make accurate transfer predictions within and beyond the training panels of TFs and cell types. We additionally train a linear-chain conditional random field (CRF) to classify binding predictions and show that this CRF eliminates the need for setting a probability threshold and reduces classification noise. We compare our method’s predictive performance with two state-of-the-art methods, Catchitt and Leopard, and show that our method outperforms previous methods under both supervised and transfer learning settings.

    Availability and implementation

    NetTIME is freely available at https://github.com/ryi06/NetTIME and the code is also archived at https://doi.org/10.5281/zenodo.6994897.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    Alternative polyadenylation (polyA) sites near the 3′ end of a pre-mRNA create multiple mRNA transcripts with different 3′ untranslated regions (3′ UTRs). The sequence elements of a 3′ UTR are essential for many biological activities such as mRNA stability, sub-cellular localization, protein translation, protein binding and translation efficiency. Moreover, numerous studies in the literature have reported the correlation between diseases and the shortening (or lengthening) of 3′ UTRs. As alternative polyA sites are common in mammalian genes, several machine learning tools have been published for predicting polyA sites from sequence data. These tools either consider limited sequence features or use relatively old algorithms for polyA site prediction. Moreover, none of the previous tools consider RNA secondary structures as a feature to predict polyA sites.

    Results

    In this paper, we propose a new deep learning model, called DeepPASTA, for predicting polyA sites from both sequence and RNA secondary structure data. The model is then extended to predict tissue-specific polyA sites. Moreover, the tool can predict the most dominant (i.e. frequently used) polyA site of a gene in a specific tissue and relative dominance when two polyA sites of the same gene are given. Our extensive experiments demonstrate that DeepPASTA signisficantly outperforms the existing tools for polyA site prediction and tissue-specific relative and absolute dominant polyA site prediction.

    Availability and implementation

    https://github.com/arefeen/DeepPASTA

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less