skip to main content


Title: Poster: Data Recovery from Ransomware Attacks via File System Forensics and Flash Translation Layer Data Extraction
Ransomware is increasingly prevalent in recent years. To defend against ransomware in computing devices using flash memory as external storage, existing designs extract the entire raw flash memory data to restore the external storage to a good state. However, they cannot allow a fine-grained recovery in terms of user files as raw flash memory data do not have the semantics of "files". In this work, we design FFRecovery, a new ransomware defense strategy that can support fine-grained data recovery after the attacks. Our key idea is, to recover a file corrupted by the ransomware, we can 1) restore its file system metadata via file system forensics, and 2) extract its file data via raw data extraction from the flash translation layer, and 3) assemble the corresponding file system metadata and the file data. A simple prototype of FFRecovery has been developed and some preliminary results are provided.  more » « less
Award ID(s):
1938130
NSF-PAR ID:
10379937
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 ACM SIGSAC Conference on Computer and Communications Security (CCS '22)
Page Range / eLocation ID:
3335 to 3337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  2. Server systems with large amounts of physical memory can benefit from using some of the available memory capacity for in-memory snapshots of the ongoing computations. In-memory snapshots are useful for services such as scaling of new workload instances, debugging, during scheduling, etc., which do not require snapshot persistence across node crashes/reboots. Since increasingly more frequently servers run containerized workloads, using technologies such as Docker, the snapshot, and the subsequent snapshot restore mechanisms, would be applied at granularity of containers. However, CRIU, the current approach to snapshot/restore containers, suffers from expensive filesystem write/read operations on image files containing memory pages, which dominate the runtime costs and impact the potential benefits of manipulating in-memory process state. In this paper, we demonstrate that these overheads can be eliminated by using MVAS -- kernel support for multiple independent virtual address spaces (VAS), designed specifically for machines with large memory capacities. The resulting VAS-CRIU stores application memory as a separate snapshot address space in DRAM and avoids costly file system operations. This accelerates the snapshot/restore of address spaces by two orders of magnitude, resulting in an overall reduction in snapshot time by up to 10× and restore time by up to 9×. We demonstrate the utility of VAS-CRIU for container management services such as fine-grained snapshot generation and container instance scaling. 
    more » « less
  3. null (Ed.)
    The Tweet Collection Management (TWT) Team aims to ingest 5 billion tweets, clean this data, analyze the metadata present, extract key information, classify tweets into categories, and finally, index these tweets into Elasticsearch to browse and query. The main deliverable of this project is a running software application for searching tweets and for viewing Twitter collections from Digital Library Research Laboratory (DLRL) event archive projects. As a starting point, we focused on two development goals: (1) hashtag-based and (2) username-based search for tweets. For IR1, we completed extraction of two fields within our sample collection: hashtags and username. Sample code for TwiRole, a user-classification program, was investigated for use in our project. We were able to sample from multiple collections of tweets, spanning topics like COVID-19 and hurricanes. Initial work encompassed using a sample collection, provided via Google Drive. An NFS-based persistent storage was later involved to allow access to larger collections. In total, we have developed 9 services to extract key information like username, hashtags, geo-location, and keywords from tweets. We have also developed services to allow for parsing and cleaning of raw API data, and backup of data in an Apache Parquet filestore. All services are Dockerized and added to the GitLab Container Registry. The services are deployed in the CS cloud cluster to integrate services into the full search engine workflow. A service is created to convert WARC files to JSON for reading archive files into the application. Unit testing of services is complete and end-to-end tests have been conducted to improve system robustness and avoid failure during deployment. The TWT team has indexed 3,200 tweets into the Elasticsearch index. Future work could involve parallelization of the extraction of metadata, an alternative feature-flag approach, advanced geo-location inference, and adoption of the DMI-TCAT format. Key deliverables include a data body that allows for search, sort, filter, and visualization of raw tweet collections and metadata analysis; a running software application for searching tweets and for viewing Twitter collections from Digital Library Research Laboratory (DLRL) event archive projects; and a user guide to assist those using the system. 
    more » « less
  4. We describe GraFBoost, a flash-based architecture with hardware acceleration for external analytics of multi-terabyte graphs. We compare the performance of GraFBoost with 1 GB of DRAM against various state-of-the-art graph analytics software including FlashGraph, running on a 32-thread Xeon server with 128 GB of DRAM. We demonstrate that despite the relatively small amount of DRAM, GraFBoost achieves high performance with very large graphs no other system can handle, and rivals the performance of the fastest software platforms on sizes of graphs that existing platforms can handle. Unlike in-memory and semi-external systems, GraFBoost uses a constant amount of memory for all problems, and its performance decreases very slowly as graph sizes increase, allowing GraFBoost to scale to much larger problems than possible with existing systems while using much less resources on a single-node system. The key component of GraFBoost is the sort-reduce accelerator, which implements a novel method to sequentialize fine-grained random accesses to flash storage. The sort-reduce accelerator logs random update requests and then uses hardware-accelerated external sorting with interleaved reduction functions. GraFBoost also stores newly updated vertex values generated in each superstep of the algorithm lazily with the old vertex values to further reduce I/O traffic. We evaluate the performance of GraFBoost for PageRank, breadth-first search and betweenness centrality on our FPGA-based prototype (Xilinx VC707 with 1 GB DRAM and 1 TB flash) and compare it to other graph processing systems including a pure software implementation of GrapFBoost. 
    more » « less
  5. File systems that store metadata on a single machine or via a shared-disk abstraction face scalability challenges, especially in contexts demanding the management of billions of files. Recent work has shown that employing shared-nothing, distributed database system (DDBMS) for metadata storage can alleviate these scalability challenges without compromising on high availability guarantees. However, for low-scale deployments -- where metadata can fit in memory on a single machine -- these DDBMS-based systems typically perform an order of magnitude worse than systems that store metadata in memory on a single machine. This has limited the impact of these distributed database approaches, since they are only currently applicable to file systems of extreme scale. This paper describes FileScale, a three-tier architecture that incorporates a DDBMS as part of a comprehensive approach to file system metadata management. In contrast to previous approaches, FileScale performs comparably to the single-machine architecture at a small scale, while enabling linear scalability as the file system metadata increases. 
    more » « less