The migration to electronic health records (EHR) in the healthcare industry has raised issues with respect to security and privacy. One issue that has become a concern for healthcare providers, insurance companies, and pharmacies is patient health information (PHI) leaks because PHI leaks can lead to violation of privacy laws, which protect the privacy of individuals’ identifiable health information, potentially resulting in a healthcare crisis. This study explores the issue of PHI leaks from an access control viewpoint. We utilize access control policies and PHI leak scenarios derived from semi structured interviews with four healthcare practitioners and use the lens of activity theory to articulate the design of an access control model for detecting and mitigating PHI leaks. Subsequently, we follow up with a prototype as a proof of concept.
more »
« less
All Eyes On Me: Inside Third Party Trackers' Exfiltration of PHI from Healthcare Providers' Online Systems
In the United States, sensitive health information is protected under the Health Insurance Portability and Accountability Act (HIPAA). This act limits the disclosure of Protected Health Information (PHI) without the patient’s consent or knowledge. However, as medical care becomes web-integrated, many providers have chosen to use third-party web trackers for measurement and marketing purposes. This presents a security concern: third-party JavaScript requested by an online healthcare system can read the website’s contents, and ensuring PHI is not unintentionally or maliciously leaked becomes difficult. In this paper, we investigate health information breaches in online medical records, focusing on 459 online patient portals and 4 telehealth websites.
We find 14% of patient portals include Google Analytics, which reveals (at a minimum) the fact that the user visited the health provider website, while 5 portals and 4 telehealth websites con- tained JavaScript-based services disclosing PHI, including medications and lab results, to third parties. The most significant PHI breaches were on behalf of Google and Facebook trackers. In the latter case, an estimated 4.5 million site visitors per month were potentially exposed to leaks of personal information (names, phone numbers) and medical information (test results, medications). We notified healthcare providers of the PHI breaches and found only 15.7% took action to correct leaks. Healthcare operators lacked the technical expertise to identify PHI breaches caused by third-party trackers. After notifying Epic, a healthcare portal vendor, of the PHI leaks, we received a prompt response and observed extensive mitigation across providers, suggesting vendor notification is an effective intervention against PHI disclosures.
more »
« less
- Award ID(s):
- 1903612
- PAR ID:
- 10380003
- Date Published:
- Journal Name:
- Proceedings of the 21st Workshop on Privacy in the Electronic Society
- Page Range / eLocation ID:
- 197 to 211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Hospitalization of patients with chronic diseases poses a significant burden on the healthcare system. Frequent hospitalization can be partially attributed to the failure of healthcare providers to engage effectively with their patients. Recently, patient portals have become popular as information technology (IT) platforms that provide patients with online access to their medical records and help them engage effectively with healthcare providers. Despite the popularity of these portals, there is a paucity of research on the impact of patient–provider engagement on patients’ health outcomes. Drawing on the theory of effective use, we examine the association between portal use and the incidence of subsequent patient hospitalizations, based on a unique, longitudinal dataset of patients’ portal use, across a 12-year period at a large academic medical center in North Texas. Our results indicate that portal use is associated with improvements in patient health outcomes along multiple dimensions, including the frequency of hospital and emergency visits, readmission risk, and length of stay. This is one of the first studies to conduct a large-scale, longitudinal analysis of a health IT system and its effect on individual level health outcomes. Our results highlight the need for technologies that can improve patient–provider engagement and improve overall health outcomes for chronic disease management.more » « less
-
Electronic Health Records (EHRs) have become increasingly popular in recent years, providing a convenient way to store, manage and share relevant information among healthcare providers. However, as EHRs contain sensitive personal information, ensuring their security and privacy is most important. This paper reviews the key aspects of EHR security and privacy, including authentication, access control, data encryption, auditing, and risk management. Additionally, the paper dis- cusses the legal and ethical issues surrounding EHRs, such as patient consent, data ownership, and breaches of confidentiality. Effective implementation of security and privacy measures in EHR systems requires a multi-disciplinary approach involving healthcare providers, IT specialists, and regulatory bodies. Ultimately, the goal is to come upon a balance between protecting patient privacy and ensuring timely access to critical medical information for feature healthcare delivery.more » « less
-
The Internet of Medical Things (IoMT) is a network of interconnected medical devices, wearables, and sensors integrated into healthcare systems. It enables real-time data collection and transmission using smart medical devices with trackers and sensors. IoMT offers various benefits to healthcare, including remote patient monitoring, improved precision, and personalized medicine, enhanced healthcare efficiency, cost savings, and advancements in telemedicine. However, with the increasing adoption of IoMT, securing sensitive medical data becomes crucial due to potential risks such as data privacy breaches, compromised health information integrity, and cybersecurity threats to patient information. It is necessary to consider existing security mechanisms and protocols and identify vulnerabilities. The main objectives of this paper aim to identify specific threats, analyze the effectiveness of security measures, and provide a solution to protect sensitive medical data. In this paper, we propose an innovative approach to enhance security management for sensitive medical data using blockchain technology and smart contracts within the IoMT ecosystem. The proposed system aims to provide a decentralized and tamper-resistant plat- form that ensures data integrity, confidentiality, and controlled access. By integrating blockchain into the IoMT infrastructure, healthcare organizations can significantly enhance the security and privacy of sensitive medical data.more » « less
-
null (Ed.)Monetizing websites and web apps through online advertising is widespread in the web ecosystem, creating a billion-dollar market. This has led to the emergence of a vast network of tertiary ad providers and ad syndication to facilitate this growing market. Nowadays, the online advertising ecosystem forces publishers to integrate ads from these third-party domains. On the one hand, this raises several privacy and security concerns that are actively being studied in recent years. On the other hand, the ability of today's browsers to load dynamic web pages with complex animations and Javascript has also transformed online advertising. This can have a significant impact on webpage performance. The latter is a critical metric for optimization since it ultimately impacts user satisfaction. Unfortunately, there are limited literature studies on understanding the performance impacts of online advertising which we argue is as important as privacy and security. In this paper, we apply an in-depth and first-of-a-kind performance evaluation of web ads. Unlike prior efforts that rely primarily on adblockers, we perform a fine-grained analysis on the web browser's page loading process to demystify the performance cost of web ads. We aim to characterize the cost by every component of an ad, so the publisher, ad syndicate, and advertiser can improve the ad's performance with detailed guidance. For this purpose, we develop a tool, adPerf, for the Chrome browser that classifies page loading workloads into ad-related and main-content at the granularity of browser activities. Our evaluations show that online advertising entails more than 15% of browser page loading workload and approximately 88% of that is spent on JavaScript. On smartphones, this additional cost of ads is 7% lower since mobile pages include fewer and well-optimized ads. We also track the sources and delivery chain of web ads and analyze performance considering the origin of the ad contents. We observe that 2 of the well-known third-party ad domains contribute to 35% of the ads performance cost and surprisingly, top news websites implicitly include unknown third-party ads which in some cases build up to more than 37% of the ads performance cost.more » « less