Wintertime cold air outbreaks (CAOs) in the Great Plains of the United States have significant socioeconomic, environmental, and infrastructural impacts; the events of December 1983 and February 2021 are key examples of this. Previous studies have investigated CAOs in other parts of North America, particularly the eastern United States, but the development of CAOs in the Great Plains and their potential subseasonal-to-seasonal (S2S) predictability have yet to be assessed. This study first identifies 37 large-scale CAOs in the Great Plains between 1950 and 2021, before examining their characteristics, evolution, and driving mechanisms. These events occur under two dominant weather regimes at event onset: one set associated with anomalous ridging over Alaska and the other set associated with anomalous pan-Arctic ridging. Alaskan ridge CAOs evolve quickly (i.e., on synoptic time scales) and involve stratospheric wave reflection. Conversely, Arctic high CAOs are preceded by weak stratospheric polar vortex conditions several weeks prior to the event. Both categories of CAOs feature anomalous upward wave activity flux from Siberia, with downward wave activity flux over Canada seen only in the Alaskan ridge CAOs. The rapid development of the Alaskan ridge CAOs, also linked with a North Pacific wave train and anomalous wave activity flux from the central Pacific, suggests that these events could be forced by tropical modes of variability. These findings present evidence that different forcing mechanisms, with contrasting time scales, may produce distinct sources of predictability for these CAOs on the S2S time scale.
The February 2021 cold air outbreak (CAO) was a high‐impact event in the South‐Central Plains of the United States. This study examines important precursors to the event that likely impacted its predictability in subseasonal forecasts. We use reanalysis to show that the CAO was facilitated by two distinct wave breaks—an East Siberian Sea anticyclonic wave break and a Labrador Sea cyclonic wave break. We also use European Center for Medium‐Range Weather Forecasts and National Center for Environmental Prediction subseasonal‐to‐seasonal models to investigate the impact of the wave breaks on the forecast skill of the event at a ∼2–3 weeks lead time. Ensemble members successfully simulating these features produce more negative temperature anomalies across the Great Plains, corresponding to better positioning of anomalous ridging. These results demonstrate that successfully simulating persistent anticyclones can improve central US extreme cold forecasts at long leads.
more » « less- Award ID(s):
- 1946093
- NSF-PAR ID:
- 10380075
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 21
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Between October 2018 ‐ May 2019, sea surface temperature conditions in the central‐eastern tropical Pacific indicated a mild El Niño event. In May 2019, the global El Niño Southern Oscillation (ENSO) forecast consensus was that these generally weak warm patterns will persist at least until the end of the northern hemisphere summer. El Niño and its impact on local climatic conditions in southern coastal Ecuador influence the inter‐annual transmission of dengue fever in the region. In this study, we use an ENSO model to issue forecasts of El Niño for the year 2019, which are then used to predict local climate variables, precipitation and minimum temperature, in the city of Machala, Ecuador. All these forecasts are incorporated in a dengue transmission model, specifically developed and tested for this area, to produce out‐of‐sample predictions of dengue risk. Predictions are issued at the beginning of January 2019 for the whole year, thus providing the longest forecast lead time of 12 months. Preliminary results indicate that the mild and ongoing El Niño event did not provide the optimum climate conditions for dengue transmission, with the model predicting a very low probability of a dengue outbreak during the typical peak season in Machala in 2019. This is contrary to 2016, when a large El Niño event resulted in excess rainfall and warmer temperatures in the region, and a dengue outbreak occurred 3 months earlier than expected. This event was successfully predicted using a similar prediction framework to the one applied here. With the present study, we continue our efforts to build and test a climate service tool to issue early warnings of dengue outbreaks in the region.
-
Abstract Skillfully predicting the North Atlantic Oscillation (NAO), and the closely related northern annular mode (NAM), on ‘subseasonal’ (weeks to less than a season) timescales is a high priority for operational forecasting centers, because of the NAO’s association with high-impact weather events, particularly during winter. Unfortunately, the relatively fast, weather-related processes dominating total NAO variability are unpredictable beyond about two weeks. On longer timescales, the tropical troposphere and the stratosphere provide some predictability, but they contribute relatively little to total NAO variance. Moreover, subseasonal forecasts are only sporadically skillful, suggesting the practical need to identify the fewer potentially predictable events at the time of forecast. Here we construct an observationally based linear inverse model (LIM) that predicts when, and diagnoses why, subseasonal NAO forecasts will be most skillful. We use the LIM to identify those dynamical modes that, despite capturing only a fraction of overall NAO variability, are largely responsible for extended-range NAO skill. Predictable NAO events stem from the linear superposition of these modes, which represent joint tropical sea-surface temperature-lower stratosphere variability plus a single mode capturing downward propagation from the upper stratosphere. Our method has broad applicability because both the LIM and the state-of-the-art European Centre for Medium-Range Weather Forecasts Integrated Forecast System (IFS) have higher (and comparable) skill for the same set of predicted high skill forecast events, suggesting that the low-dimensional predictable subspace identified by the LIM is relevant to real-world subseasonal NAO predictions.
-
Abstract The predictability of sea ice during extreme sea ice loss events on subseasonal (daily to weekly) time scales is explored in dynamical forecast models. These extreme sea ice loss events (defined as the 5th percentile of the 5-day change in sea ice extent) exhibit substantial regional and seasonal variability; in the central Arctic Ocean basin, most subseasonal rapid ice loss occurs in the summer, but in the marginal seas rapid sea ice loss occurs year-round. Dynamical forecast models are largely able to capture the seasonality of these extreme sea ice loss events. In most regions in the summertime, sea ice forecast skill is lower on extreme sea ice loss days than on nonextreme days, despite evidence that links these extreme events to large-scale atmospheric patterns; in the wintertime, the difference between extreme and nonextreme days is less pronounced. In a damped anomaly forecast benchmark estimate, the forecast error remains high following extreme sea ice loss events and does not return to typical error levels for many weeks; this signal is less robust in the dynamical forecast models but still present. Overall, these results suggest that sea ice forecast skill is generally lower during and after extreme sea ice loss events and also that, while dynamical forecast models are capable of simulating extreme sea ice loss events with similar characteristics to what we observe, forecast skill from dynamical models is limited by biases in mean state and variability and errors in the initialization. Significance Statement We studied weather model forecasts of changes in Arctic sea ice extent on day-to-day time scales in different regions and seasons. We were especially interested in extreme sea ice loss days, or days in which sea ice melts very quickly or is reduced due to diverging forces such as winds, ocean currents, and waves. We find that forecast models generally capture the observed timing of extreme sea ice loss days. We also find that forecasts of sea ice extent are worse on extreme sea ice loss days compared to typical days, and that forecast errors remain elevated following extreme sea ice loss events.more » « less
-
Abstract This study examined the origin of the systematic underestimation of rainfall anomalies over East Asia during July–August 2020 in operational forecasts. Through partial nudging experiments, we found that the East Asian rainfall anomalies were successfully predicted in GloSea5 with corrected tropical sea surface temperature (SST) forcing. Once the observed SST is applied over the Indian Ocean and tropical central‐eastern Pacific, a low‐level anticyclonic anomaly over the subtropical western Pacific, which transports warm‐moist air from the tropics to increase the East Asian precipitation, is well reproduced as observed. By further separating the SST into climatological and anomalous components, we revealed that the cold and dry mean state bias over the Indian Ocean and central‐eastern Pacific is responsible for the weak anomalous atmospheric teleconnection patterns from the tropics to East Asia. This implies that correcting the model mean climatological fields can directly impact the operational seasonal forecast skill.