skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Wave Breaking in the Development and Subseasonal Forecasts of the February 2021 Great Plains Cold Air Outbreak
Abstract The February 2021 cold air outbreak (CAO) was a high‐impact event in the South‐Central Plains of the United States. This study examines important precursors to the event that likely impacted its predictability in subseasonal forecasts. We use reanalysis to show that the CAO was facilitated by two distinct wave breaks—an East Siberian Sea anticyclonic wave break and a Labrador Sea cyclonic wave break. We also use European Center for Medium‐Range Weather Forecasts and National Center for Environmental Prediction subseasonal‐to‐seasonal models to investigate the impact of the wave breaks on the forecast skill of the event at a ∼2–3 weeks lead time. Ensemble members successfully simulating these features produce more negative temperature anomalies across the Great Plains, corresponding to better positioning of anomalous ridging. These results demonstrate that successfully simulating persistent anticyclones can improve central US extreme cold forecasts at long leads.  more » « less
Award ID(s):
1946093
PAR ID:
10380075
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wintertime cold air outbreaks (CAOs) in the Great Plains of the United States have significant socioeconomic, environmental, and infrastructural impacts; the events of December 1983 and February 2021 are key examples of this. Previous studies have investigated CAOs in other parts of North America, particularly the eastern United States, but the development of CAOs in the Great Plains and their potential subseasonal-to-seasonal (S2S) predictability have yet to be assessed. This study first identifies 37 large-scale CAOs in the Great Plains between 1950 and 2021, before examining their characteristics, evolution, and driving mechanisms. These events occur under two dominant weather regimes at event onset: one set associated with anomalous ridging over Alaska and the other set associated with anomalous pan-Arctic ridging. Alaskan ridge CAOs evolve quickly (i.e., on synoptic time scales) and involve stratospheric wave reflection. Conversely, Arctic high CAOs are preceded by weak stratospheric polar vortex conditions several weeks prior to the event. Both categories of CAOs feature anomalous upward wave activity flux from Siberia, with downward wave activity flux over Canada seen only in the Alaskan ridge CAOs. The rapid development of the Alaskan ridge CAOs, also linked with a North Pacific wave train and anomalous wave activity flux from the central Pacific, suggests that these events could be forced by tropical modes of variability. These findings present evidence that different forcing mechanisms, with contrasting time scales, may produce distinct sources of predictability for these CAOs on the S2S time scale. 
    more » « less
  2. Abstract North American cold air outbreaks (CAOs) are large-scale temperature extremes that typically originate in the high latitudes and impact the midlatitudes in winter. As they transit southward, they can have significant socioeconomic consequences. CAOs from winter (DJF) 1979 to 2020 were identified in the fifth major global reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA5) using an automated feature tracking approach (TempestExtremesV2.1). This allowed for the systematic identification of a large number of cases without using predetermined, Eulerian regions. Another important advantage of this approach was the ability to compute a feature tracked thermodynamic energy budget in a nonfixed domain for every identified CAO event. As an example, the thermodynamic energy budget analysis was used to quantify important processes for the 18–23 January 1985 CAO. The dominant mechanisms of cooling and warming as well as lysis locations (i.e., eastern or western) were then used to generalize detected CAO events into subcategories. The associated statistics, spatial footprints, and composites of 500-hPa height, sea level pressure, and temperature and winds at 850 hPa were analyzed for three subcategories that contained the majority of events. This analysis revealed that CAO events that form and dissipate through different mechanisms occur in different regions, have different intensities, and are associated with different large-scale circulation patterns. Finally, the analysis of associated North Atlantic Oscillation (NAO) and Pacific–North American (PNA) teleconnection pattern revealed that the PNA is typically in a positive phase for eastern CAO events and in a negative phase for western events resulting primarily from horizontal advection, whereas the NAO did not have any significant relationship. 
    more » « less
  3. Abstract The Arctic region is experiencing significant changes due to climate change, and the resulting decline in sea ice concentration and extent is already impacting ocean dynamics and exacerbating coastal hazards in the region. In this context, numerical models play a crucial role in simulating the interactions between the ocean, land, sea ice, and atmosphere, thus supporting scientific studies in the region. This research aims to evaluate how different sea ice products with spatial resolutions varying from 2 to 25 km influence a phase averaged spectral wave model results in the Alaskan Arctic under storm conditions. Four events throughout the Fall to Winter seasons in 2019 were utilized to assess the accuracy of wave simulations generated under the dynamic sea ice conditions found in the Arctic. The selected sea ice products used to parameterize the numerical wave model include the National Snow and Ice Data Center (NSIDC) sea ice concentration, the European Centre for Medium‐Range Weather Forecasts (ECMWF) Re‐Analysis (ERA5), the HYbrid Coordinate Ocean Model‐Community Ice CodE (HYCOM‐CICE) system assimilated with Navy Coupled Ocean Data Assimilation (NCODA), and the High‐resolution Ice‐Ocean Modeling and Assimilation System (HIOMAS). The Simulating WAves Nearshore (SWAN) model's accuracy in simulating waves using these sea ice products was evaluated against Sea State Daily Multisensor L3 satellite observations. Results show wave simulations using ERA5 consistently exhibited high correlation with observations, maintaining an accuracy above 0.83 to the observations across all events. Conversely, HIOMAS demonstrated the weakest performance, particularly during the Winter, with the lowest correlation of 0.40 to the observations. Remarkably, ERA5 surpassed all other products by up to 30% in accuracy during the selected storm events, and even when an ensemble was assessed by combining the selected sea ice products, ERA5's individual performance remained unmatched. Our study provides insights for selecting sea ice products under different sea ice conditions for accurately simulating waves and coastal hazards in high latitudes. 
    more » « less
  4. Abstract Skillfully predicting the North Atlantic Oscillation (NAO), and the closely related northern annular mode (NAM), on ‘subseasonal’ (weeks to less than a season) timescales is a high priority for operational forecasting centers, because of the NAO’s association with high-impact weather events, particularly during winter. Unfortunately, the relatively fast, weather-related processes dominating total NAO variability are unpredictable beyond about two weeks. On longer timescales, the tropical troposphere and the stratosphere provide some predictability, but they contribute relatively little to total NAO variance. Moreover, subseasonal forecasts are only sporadically skillful, suggesting the practical need to identify the fewer potentially predictable events at the time of forecast. Here we construct an observationally based linear inverse model (LIM) that predicts when, and diagnoses why, subseasonal NAO forecasts will be most skillful. We use the LIM to identify those dynamical modes that, despite capturing only a fraction of overall NAO variability, are largely responsible for extended-range NAO skill. Predictable NAO events stem from the linear superposition of these modes, which represent joint tropical sea-surface temperature-lower stratosphere variability plus a single mode capturing downward propagation from the upper stratosphere. Our method has broad applicability because both the LIM and the state-of-the-art European Centre for Medium-Range Weather Forecasts Integrated Forecast System (IFS) have higher (and comparable) skill for the same set of predicted high skill forecast events, suggesting that the low-dimensional predictable subspace identified by the LIM is relevant to real-world subseasonal NAO predictions. 
    more » « less
  5. Abstract Streamflow forecasting at a subseasonal time scale (10–30 days into the future) is important for various human activities. The ensemble streamflow prediction (ESP) is a widely applied technique for subseasonal streamflow forecasting. However, ESP’s reliance on the randomly resampled historical precipitation limits its predictive capability. Available dynamical subseasonal precipitation forecasts provide an alternative to the randomly resampled precipitation in ESP. Prior studies found the predictive performance of raw subseasonal precipitation forecast is limited in many regions such as the central south of the United States, which raises questions about its effectiveness in assisting streamflow forecasting. To further assess the hydrologic applicability of dynamical subseasonal precipitation forecasts, we test the subseasonal precipitation forecast from North America Multi-Model Ensemble Phase II (NMME-2) at four watersheds in the central south region of the United States. The subseasonal precipitation forecasts are postprocessed with bias correction and spatial disaggregation (BCSD) to correct bias and improve spatial resolution before replacing the randomly resampled precipitation in ESP for streamflow predictions. The performance of the resulting streamflow predictions is benchmarked with ESP. Evaluation is conducted using Kling–Gupta Efficiency (KGE), continuous ranked probability score (CRPS), probability of detection (POD), false alarm ratios (FARs), as well as reliability diagrams. Our results suggest that BCSD-corrected subseasonal precipitation forecasts lead to overall improved streamflow predictions due to added skills in winter and spring. Our results also suggest that BCSD-corrected subseasonal precipitation forecasts lead to improved predictions on the occurrence of high-percentile streamflow values above 75%. Overall, BCSD-corrected subseasonal precipitation has shown promising performance, highlighting its potential broader applications for river and flood forecasting. 
    more » « less