skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Type II band alignment of NiO/α-Ga 2 O 3 for annealing temperatures up to 600 °C
There is increasing interest in the alpha polytype of Ga 2 O 3 because of its even larger bandgap than the more studied beta polytype, but in common with the latter, there is no viable p-type doping technology. One option is to use p-type oxides to realize heterojunctions and NiO is one of the candidate oxides. The band alignment of sputtered NiO on α-Ga 2 O 3 remains type II, staggered gap for annealing temperatures up to 600 °C, showing that this is a viable approach for hole injection in power electronic devices based on the alpha polytype of Ga 2 O 3 . The magnitude of both the conduction and valence band offsets increases with temperature up to 500 °C, but then is stable to 600 °C. For the as-deposited NiO/α-Ga 2 O 3 heterojunction, ΔE V  = −2.8 and ΔE C  = 1.6 eV, while after 600 °C annealing the corresponding values are ΔE V  = −4.4 and ΔE C  = 3.02 eV. These values are 1−2 eV larger than for the NiO/β-Ga 2 O 3 heterojunction.  more » « less
Award ID(s):
1856662
PAR ID:
10380190
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
40
Issue:
6
ISSN:
0734-2101
Page Range / eLocation ID:
063408
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The band alignment of sputtered NiO on β -Ga 2 O 3 was measured by x-ray photoelectron spectroscopy for post-deposition annealing temperatures up to 600 °C. The band alignment is type II, staggered gap in all cases, with the magnitude of the conduction and valence band offsets increasing monotonically with annealing temperature. For the as-deposited heterojunction, Δ E V = −0.9 eV and Δ E C = 0.2 eV, while after 600 °C annealing the corresponding values are Δ E V = −3.0 eV and Δ E C = 2.12 eV. The bandgap of the NiO was reduced from 3.90 eV as-deposited to 3.72 eV after 600 °C annealing, which accounts for most of the absolute change in Δ E V −Δ E C . Differences in thermal budget may be at least partially responsible for the large spread in band offsets reported in the literature for this heterojunction. Other reasons could include interfacial disorder and contamination. Differential charging, which could shift peaks by different amounts and could potentially be a large source of error, was not observed in our samples. 
    more » « less
  2. The characteristics of sputtered NiO for use in pn heterojunctions with Ga 2 O 3 were investigated as a function of sputtering parameters and postdeposition annealing temperature. The oxygen/ nickel and Ni 2 O 3 /NiO ratios, as well as the bandgap and resistivity, increased as a function of O 2 /Ar gas flow ratio. For example, the bandgap increased from 3.7 to 3.9 eV and the resistivity increased from 0.1 to 2.9 Ω cm for the O 2 /Ar ratio increasing from 1/30 to 1/3. By sharp contrast, the bandgap and Ni 2 O 3 /NiO ratio decreased monotonically with postdeposition annealing temperatures up to 600 °C, but the density of films increased due to a higher fraction of NiO being present. Hydrogen is readily incorporated into NiO during exposure to plasmas, as delineated by secondary ion mass spectrometry measurements on deuterated films. The band alignments of NiO films were type II-staggered gaps with both α- and β-Ga 2 O 3 . The breakdown voltage of NiO/β-Ga 2 O 3 heterojunction rectifiers was also a strong function of the O 2 /Ar flow ratio during deposition, with values of 1350 V for 1/3 and 830 V for 1/30. 
    more » « less
  3. NiO is a promising alternative to p-GaN as a hole injection layer for normally-off lateral transistors or low on-resistance vertical heterojunction rectifiers. The valence band offsets of sputtered NiO on c-plane, vertical geometry homoepitaxial GaN structures were measured by x-ray photoelectron spectroscopy as a function of annealing temperatures to 600 °C. This allowed determination of the band alignment from the measured bandgap of NiO. This alignment was type II, staggered gap for both as-deposited and annealed samples. For as-deposited heterojunction, ΔE V  = 2.89 eV and ΔE C  = −2.39 eV, while for all the annealed samples, ΔE V values were in the range of 3.2–3.4 eV and ΔE C values were in the range of −(2.87–3.05) eV. The bandgap of NiO was reduced from 3.90 eV as-deposited to 3.72 eV after 600 °C annealing, which accounts for much of the absolute change in ΔE V  − ΔE C . At least some of the spread in reported band offsets for the NiO/GaN system may arise from differences in their thermal history. 
    more » « less
  4. The band alignment of Atomic Layer Deposited SiO 2 on (In x Ga 1−x ) 2 O 3 at varying indium concentrations is reported before and after annealing at 450 °C and 600 °C to simulate potential processing steps during device fabrication and to determine the thermal stability of MOS structures in high-temperature applications. At all indium concentrations studied, the valence band offsets (VBO) showed a nearly constant decrease as a result of 450 °C annealing. The decrease in VBO was −0.35 eV for (In 0.25 Ga 0.75 ) 2 O 3 , −0.45 eV for (In 0.42 Ga 0.58 ) 2 O 3 , −0.40 eV for (In 0.60 Ga 0.40 ) 2 O 3 , and −0.35 eV (In 0.74 Ga 0.26 ) 2 O 3 for 450 °C annealing. After annealing at 600 °C, the band alignment remained stable, with <0.1 eV changes for all structures examined, compared to the offsets after the 450 °C anneal. The band offset shifts after annealing are likely due to changes in bonding at the heterointerface. Even after annealing up to 600 °C, the band alignment remains type I (nested gap) for all indium compositions of (In x Ga 1−x ) 2 O 3 studied. 
    more » « less
  5. There is increasing interest in α-polytype Ga 2 O 3 for power device applications, but there are few published reports on dielectrics for this material. Finding a dielectric with large band offsets for both valence and conduction bands is especially challenging given its large bandgap of 5.1 eV. One option is HfSiO 4 deposited by atomic layer deposition (ALD), which provides conformal, low damage deposition and has a bandgap of 7 eV. The valence band offset of the HfSiO 4 /Ga 2 O 3 heterointerface was measured using x-ray photoelectron spectroscopy. The single-crystal α-Ga 2 O 3 was grown by halide vapor phase epitaxy on sapphire substrates. The valence band offset was 0.82 ± 0.20 eV (staggered gap, type-II alignment) for ALD HfSiO 4 on α-Ga 0.2 O 3 . The corresponding conduction band offset was −2.72 ± 0.45 eV, providing no barrier to electrons moving into Ga 2 O 3 . 
    more » « less