skip to main content


Title: Near-term potential of organic waste management infrastructure for soil carbon sequestration in rangelands
Abstract

Contemporary food and agricultural systems degrade soils, pollute natural resources, and contribute to greenhouse gas emissions. The waste output from these systems, however, can be repurposed as an agricultural input, reducing emissions associated with organics disposal while actively sequestering atmospheric carbon in soils—thus transitioning the sector from a carbon source to a carbon sink. This research estimates the near-term technical and economic potential of utilizing composted organic feedstocks as a soil amendment to mitigate climate change and improve long-term soil quality, in line with California’s organics diversion policies, by connecting food scraps and organics residuals in California’s municipal solid waste to existing infrastructure and working lands in the state. The multi-objective spatial optimization results indicate considerable carbon sequestration benefits in the range of −1.9 ± 0.5 MMT CO2eq annually, by applying compost to 6 million hectares of California rangelands at a price of approximately $200 per ton, presenting a cost-effective climate change mitigation strategy within proposed federal sequestration credits. Expanding composting capacity is predicted to increase the total amount of carbon sequestered while reducing the cost per ton and per hectare treated. This model aids decision makers in considering the technical, economic, and institutional potential of actively managing the State’s organic materials in municipal waste streams for climate change mitigation.

 
more » « less
Award ID(s):
1739676
NSF-PAR ID:
10380286
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Infrastructure and Sustainability
Volume:
2
Issue:
4
ISSN:
2634-4505
Page Range / eLocation ID:
Article No. 045007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biochar is one of the few nature‐based technologies with potential to help achieve net‐zero emissions agriculture. Such an outcome would involve the mitigation of greenhouse gas (GHG) emission from agroecosystems and optimization of soil organic carbon sequestration. Interest in biochar application is heightened by its several co‐benefits. Several reviews summarized past investigations on biochar, but these reviews mostly included laboratory, greenhouse, and mesocosm experiments. A synthesis of field studies is lacking, especially from a climate change mitigation standpoint. Our objectives are to (1) synthesize advances in field‐based studies that have examined the GHG mitigation capacity of soil application of biochar and (2) identify limitations of the technology and research priorities. Field studies, published before 2022, were reviewed. Biochar has variable effects on GHG emissions, ranging from decrease, increase, to no change. Across studies, biochar reduced emissions of nitrous oxide (N2O) by 18% and methane (CH4) by 3% but increased carbon dioxide (CO2) by 1.9%. When biochar was combined with N‐fertilizer, it reduced CO2, CH4, and N2O emissions in 61%, 64%, and 84% of the observations, and biochar plus other amendments reduced emissions in 78%, 92%, and 85% of the observations, respectively. Biochar has shown potential to reduce GHG emissions from soils, but long‐term studies are needed to address discrepancies in emissions and identify best practices (rate, depth, and frequency) of biochar application to agricultural soils.

     
    more » « less
  2. Abstract

    The “4 per 1,000” initiative was launched at the 21st Conference of the Parties (COP21) stimulating a long‐standing debate on the potential of no‐till (NT) to promote soil C sequestration. Previous reviews found little or no soil organic C (SOC) accrual in NT soils as compared with full inversion tillage when soils are sampled deeper than 30 cm. Here, we present the results of a global meta‐analysis of studies assessing SOC and total N (TN) storage and dynamics in NT and tilled soils from the most important agricultural regions of the world. Overall, our results show that NT soils stored 6.7 ± 1.9 Mg C ha–1and 1.1 ± 0.4 Mg N ha–1more than tilled soils (0‐to‐100‐cm depth) with an average of 16 yr of NT, in contrast with previous findings. However, C sequestration (+4.7 ± 1.9 Mg C ha–1in the 0‐to‐60‐cm depth with an average of 11 yr of NT) depended on the association of NT with increased crop frequency and the inclusion of legumes cover crops. Single‐cropping systems lack the necessary C inputs to offset SOC losses in the soil profile (below 30‐cm depth). However, double‐cropping systems decreased soil TN that may constrain future C sequestration. The use of legumes alleviated TN loss and supported soil C sequestration. Briefly, our findings indicate that NT can avoid SOC losses from tilled soils, partially offsetting CO2emissions from agriculture. Moreover, NT with agricultural intensification can promote soil C sequestration, thus contributing to soil quality, food security, and adaptation to climate change.

     
    more » « less
  3. The municipal solid waste (MSW) in landfills undergoes anaerobic decomposition to produce landfill gas (LFG), which predominantly consists of methane (CH4) and carbon dioxide (CO2). Fugitive LFG emissions which are otherwise not targeted by gas collection system escape into the atmosphere, forming one of the largest anthropogenic sources of CH4 and CO2 emissions in the United States. The landfill cover soil plays an important role in mitigating the LFG emissions by microbial oxidation of CH4 to CO2 thereby reducing the CH4 emissions to atmosphere. Several researchers have investigated the addition of organic amendments to the cover soils in order to enhance microbial oxidation of CH4 in landfill covers. In recent years, biochar as an organic amendment has shown promise in enhanced microbial oxidation due to its inert/stable chemical nature to degradation, high surface area, high internal porosity, and high moisture holding capacity. However, in all these efforts there is no regard given to the CO2 that still escapes into the atmosphere in undesirable amounts. Steel slag, a product from steel making industry, due to its high alkaline buffering capacity, high carbonation potential, and its unique cementitious properties has found numerous applications in civil and environmental engineering. But, until now there has been no study on the potential use of steel slag in landfill covers to sequester the CO2 emissions. Ongoing research study, funded by the U.S. National Science Foundation, explores the use of BOF steel slag in conjunction with biochar amended cover soil so as to first convert CH4 to CO2 by microbial oxidation and thereafter sequester the resulting CO2 from CH4 oxidation and the prevailing CO2 from anaerobic decomposition together by steel slag, thereby significantly mitigating the LFG emissions from landfills. In this paper, a review on the current applications and carbon sequestration mechanisms of BOF steel slag is presented. Finally, the proposed concept of the biogeochemical soil cover for mitigation of LFG emissions and some of the results from a preliminary investigation indicating the CO2 sequestration potential by steel slag are discussed. 
    more » « less
  4. Abstract

    Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non‐CO2greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e., sum of SOC‐sequestered CO2and non‐CO2GHG emissions) and the underlying controls. Herein, we used a model‐data integration approach to understand and quantify how natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960–2018. Specifically, we used the dynamic land ecosystem model for regional simulations and used field observations of SOC sequestration rates and N2O and CH4emissions to calibrate, validate, and corroborate model simulations. Results show that U.S. agricultural soils sequestered Tg CO2‐C year−1in SOC (at a depth of 3.5 m) during 1960–2018 and emitted Tg N2O‐N year−1and Tg CH4‐C year−1, respectively. Based on the GWP100 metric (global warming potential on a 100‐year time horizon), the estimated national net GHG emission rate from agricultural soils was Tg CO2‐eq year−1, with the largest contribution from N2O emissions. The sequestered SOC offset ~28% of the climate‐warming effects resulting from non‐CO2GHG emissions, and this offsetting effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the increase in net GHG emissions during 1960–2018, explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO2levels attenuated net GHG emissions from U.S. croplands. Improving management practices to mitigate N2O emissions represents the biggest opportunity for achieving net‐zero emissions in U.S. croplands. Our study highlights the importance of concurrently quantifying SOC‐sequestered CO2and non‐CO2GHG emissions for developing effective agricultural climate change mitigation measures.

     
    more » « less
  5. Transforming the organic fraction of municipal solid waste (OFMSW) into biochar to reduce fugitive landfill emissions and control organic micropollutants (OMP) during landfill leachate treatment could provide a new circular economy organics diversion approach. However, research on landfill leachate treatment under consistent, representative conditions with biochar derived from the wide range of OFMSW components is needed. Further, the competitive nature of leachate dissolved organic matter (DOM) for biochar adsorption sites has not been examined. To this end, biochars were produced from seven diverse OFMSW types and batch tested using two representative organic contaminants. To evaluate leachate DOM impact on OMP removal and fouling mitigation with biochar enhancement methods, experiments were performed with three background matrices (deionized water, synthetic leachate, real leachate) and two enhancement methods (ash-pretreatment, double-heating). Since evaluating all possible OFMSW feedstock combinations is infeasible, fundamental relationships between individual feedstocks and biochar properties were evaluated. Overall, biochar performance varied substantially; the dose to achieve a given target removal spanned an order of magnitude between the OFMSW feedstocks. Also, the presence of leachate DOM more negatively impacted the performance of all biochars relative to the benchmark adsorbent activated carbon. Finally, the enhancement methods altered biochar pore structure by increasing micropore and slightly decreasing non-micropore surface areas, resulting in improved adsorption capacity (by 23 to 93%). By providing the basis for a low-cost, enhanced leachate treatment method, this study could incentivize a novel organics diversion approach that reduces climate change impacts, harvests energy from waste, and reduces landfill air emissions. 
    more » « less