skip to main content


Title: Experimental Determination of the Dissociative Recombination Rate Coefficient for Rotationally Cold CH + and Its Implications for Diffuse Cloud Chemistry
Abstract

Observations of CH+are used to trace the physical properties of diffuse clouds, but this requires an accurate understanding of the underlying CH+chemistry. Until this work, the most uncertain reaction in that chemistry was dissociative recombination (DR) of CH+. Using an electron–ion merged-beams experiment at the Cryogenic Storage Ring, we have determined the DR rate coefficient of the CH+electronic, vibrational, and rotational ground state applicable for different diffuse cloud conditions. Our results reduce the previously unrecognized order-of-magnitude uncertainty in the CH+DR rate coefficient to ∼20% and are applicable at all temperatures relevant to diffuse clouds, ranging from quiescent gas to gas locally heated by processes such as shocks and turbulence. Based on a simple chemical network, we find that DR can be an important destruction mechanism at temperatures relevant to quiescent gas. As the temperature increases locally, DR can continue to be important up to temperatures of ∼600 K, if there is also a corresponding increase in the electron fraction of the gas. Our new CH+DR rate-coefficient data will increase the reliability of future studies of diffuse cloud physical properties via CH+abundance observations.

 
more » « less
Award ID(s):
1907188
NSF-PAR ID:
10380326
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
939
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 122
Size(s):
["Article No. 122"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The 1°.3 (G1.3) and 1°.6 (G1.6) cloud complexes in the central molecular zone (CMZ) of our Galaxy have been proposed to possibly reside at the intersection region of the X1 and X2 orbits for several reasons. This includes the detection of co-spatial low- and high-velocity clouds, high velocity dispersion, high fractional molecular abundances of shock-tracing molecules, and kinetic temperatures that are higher than for usual CMZ clouds. Aims. By investigating the morphology and deriving physical properties as well as chemical composition, we want to find the origin of the turbulent gas and, in particular, whether evidence of an interaction between clouds can be identified. Methods. We mapped both cloud complexes in molecular lines in the frequency range from 85 to 117 GHz with the IRAM 30 m telescope. The APEX 12m telescope was used to observe higher frequency transitions between 210 and 475 GHz from selected molecules that are emitted from higher energy levels. We performed non-local thermodynamic equilibrium (non-LTE) modelling of the emission of an ensemble of CH 3 CN lines to derive kinetic temperatures and H 2 volume densities. These were used as starting points for non-LTE modelling of other molecules, for which column densities and abundances were determined and compared with values found for other sources in the CMZ. Results. The kinematic structure of G1.3 reveals an ‘emission bridge’ at intermediate velocities (~150 km s −1 ) connecting low-velocity (~100 km s −1 ) and high-velocity (~180 km s −1 ) gas and an overall fluffy shell-like structure. These may represent observational evidence of cloud-cloud interactions. Low- and high-velocity gas components in G1.6 do not show this type of evidence of an interaction, suggesting that they are spatially separated. We selected three positions in each cloud complex for further analysis. Each position reveals several gas components at various peak velocities and of various line widths. We derived kinetic temperatures of 60–100 K and H 2 volume densities of 10 4 –10 5 cm −3 in both complexes. Molecular abundances relative to H 2 suggest a similar chemistry of the two clouds, which is moreover similar to that of other GC clouds and, especially, agrees well with that of G+0.693 and G−0.11. Conclusions. We conclude that G1.3 may indeed exhibit signs of cloud-cloud interactions. In particular, we propose an interaction of gas that is accreted from the near-side dust lane to the CMZ, with gas pre-existing at this location. Low- and high-velocity components in G1.6 are rather coincidentally observed along the same line of sight. They may be associated with either overshot decelerated gas from the far-side dust line or actual CMZ gas and high-velocity gas moving on a dust lane. These scenarios would be in agreement with numerical simulations. 
    more » « less
  2. ABSTRACT

    The Central Molecular Zone (the central ∼500 pc of the Milky Way) hosts molecular clouds in an extreme environment of strong shear, high gas pressure and density, and complex chemistry. G0.253+0.016, also known as ‘the Brick’, is the densest, most compact, and quiescent of these clouds. High-resolution observations with the Atacama Large Millimetre/submillimetre Array (ALMA) have revealed its complex, hierarchical structure. In this paper we compare the properties of recent hydrodynamical simulations of the Brick to those of the ALMA observations. To facilitate the comparison, we post-process the simulations and create synthetic ALMA maps of molecular line emission from eight molecules. We correlate the line emission maps to each other and to the mass column density and find that HNCO is the best mass tracer of the eight emission lines within the simulations. Additionally, we characterize the spatial structure of the observed and simulated cloud using the density probability distribution function (PDF), spatial power spectrum, fractal dimension, and moments of inertia. While we find good agreement between the observed and simulated data in terms of power spectra and fractal dimensions, there are key differences in the density PDFs and moments of inertia, which we attribute to the omission of magnetic fields in the simulations. This demonstrates that the presence of the Galactic potential can reproduce many cloud properties, but additional physical processes are needed to fully explain the gas structure.

     
    more » « less
  3. null (Ed.)
    ABSTRACT In the cold neutral medium, high out-of-equilibrium temperatures are created by intermittent dissipation processes, including shocks, viscous heating, and ambipolar diffusion. The high-temperature excursions are thought to explain the enhanced abundance of CH+ observed along diffuse molecular sightlines. Intermittent high temperatures should also have an impact on H2 line luminosities. We carry out simulations of magnetohydrodynamic (MHD) turbulence in molecular clouds including heating and cooling, and post-process them to study H2 line emission and hot-gas chemistry, particularly the formation of CH+. We explore multiple magnetic field strengths and equations of state. We use a new H2 cooling function for $n_{\text{H}}\le 10^5\, {\text{cm}}^{-3}$, $T\le 5000\, {\text{K}}$, and variable H2 fraction. We make two important simplifying assumptions: (i) the H2/H fraction is fixed everywhere and (ii) we exclude from our analysis regions where the ion–neutral drift velocity is calculated to be greater than 5 km s−1. Our models produce H2 emission lines in accord with many observations, although extra excitation mechanisms are required in some clouds. For realistic root-mean-square (rms) magnetic field strengths (≈10 μG) and velocity dispersions, we reproduce observed CH+ abundances. These findings contrast with those of Valdivia et al. (2017) Comparison of predicted dust polarization with observations by Planck suggests that the mean field is ≳5 µG, so that the turbulence is sub-Alfvénic. We recommend future work treating ions and neutrals as separate fluids to more accurately capture the effects of ambipolar diffusion on CH+ abundance. 
    more » « less
  4. Abstract

    The convectively driven transport of soluble trace gases from the lower to the upper troposphere can occur on timescales of less than an hour, and recent studies suggest that microphysical scavenging is the dominant removal process of tropospheric ozone precursors. We examine the processes responsible for vertical transport, entrainment, and scavenging of soluble ozone precursors (formaldehyde and peroxides) for midlatitude convective storms sampled on 2 September 2013 during the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) study. Cloud‐resolving simulations using the Weather Research and Forecasting with Chemistry model combined with aircraft measurements were performed to understand the effect of entrainment, scavenging efficiency (SE), and ice physics processes on these trace gases. Analysis of the observations revealed that the SEs of formaldehyde (43–53%) and hydrogen peroxide (~80–90%) were consistent between SEAC4RS storms and the severe convection observed during the Deep Convective Clouds and Chemistry Experiment (DC3) campaign. However, methyl hydrogen peroxide SE was generally smaller in the SEAC4RS storms (4%–27%) compared to DC3 convection. Predicted ice retention factors exhibit different values for some species compared to DC3, and we attribute these differences to variations in net precipitation production. The analyses show that much larger production of precipitation between condensation and freezing levels for DC3 severe convection compared to smaller SEAC4RS storms is largely responsible for the lower amount of soluble gases transported to colder temperatures, reducing the amount of soluble gases which eventually interact with cloud ice particles.

     
    more » « less
  5. Abstract

    Interstellar shocks, a key element of stellar feedback processes, shape the structure of the interstellar medium (ISM) and are essential for the chemistry, thermodynamics, and kinematics of interstellar gas. Powerful, high-velocity shocks are driven by stellar winds, young supernova explosions, more evolved supernova remnants, cloud–cloud collisions, and protostellar outflows, whereas the existence and origin of much-lower-velocity shocks (≲10 km s−1) are not understood. Direct observational evidence for interstellar shocks in diffuse and translucent ISM environments has been especially lacking. We present the most sensitive survey to date of SiO—often considered an unambiguous tracer of interstellar shocks—in absorption, obtained with the Northern Extended Millimeter Array interferometer. We detect SiO in five of eight directions probing diffuse and translucent environments without ongoing star formation. Our results demonstrate that SiO formation in the diffuse ISM (i.e., in the absence of significant star formation and stellar feedback) is more widespread and effective than previously reported. The observed SiO line widths are all ≲4 km s−1, excluding high-velocity shocks as a formation mechanism. Yet, the SiO abundances we detect are mostly 1–2 orders of magnitude higher than those typically assumed in quiescent environments and are often accompanied by other molecular transitions whose column densities cannot be explained with UV-dominated chemical models. Our results challenge the traditional view of SiO production via stellar feedback sources and emphasize the need for observational constraints on the distribution of Si in the gas phase and grain mantles, which are crucial for understanding the physics of grain processing and the diffuse interstellar chemistry.

     
    more » « less