skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental increases in temperature mean and variance alter reproductive behaviours in the dung beetle Phanaeus vindex
Temperature profoundly impacts insect development, but plasticity of reproductive behaviours may mediate the impacts of temperature change on earlier life stages. Few studies have examined the potential for adult behavioural plasticity to buffer offspring from the warmer, more variable temperatures associated with climate change. We used a field manipulation to examine whether the dung beetle Phanaeus vindex alters breeding behaviours in response to temperature changes and whether behavioural shifts protect offspring from temperature changes. Dung beetles lay eggs inside brood balls made of dung that are buried underground. Brood ball depth impacts the temperatures offspring experience with consequences for development. We placed adult females in either control or greenhouse treatments that simultaneously increased temperature mean and variance. We found that females in greenhouse treatments produced more brood balls that were smaller and buried deeper than controls, suggesting brood ball number or burial depth may come at a cost to brood ball size, which can impact offspring nutrition. Despite being buried deeper, brood balls from the greenhouse treatment experienced warmer mean temperatures but similar amplitudes of temperature fluctuation relative to controls. Our findings suggest adult behaviours may partially buffer developing offspring from temperature changes.  more » « less
Award ID(s):
1930829 2046368
PAR ID:
10380428
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biology Letters
Volume:
18
Issue:
7
ISSN:
1744-957X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Temperature strongly affects insect development, but plasticity of adult reproductive behaviors can alter the temperatures experienced by earlier life stages. To date, few studies have tested whether adult behavioral plasticity can protect offspring from the warmer,more variable temperatures linked to climate change. Here I discuss laboratory experiments and field manipulations in which my lab has examined whether the adults of three dung beetle species modify their breeding behaviors in response to increases in temperature mean and variance and whether these behavioral shifts can protect dung beetle offspring from temperature changes. Tunnelling dung beetles lay their eggs inside brood balls constructed of dung that are buried below the soil surface. The depth of the brood ball affects the temperatures that the offspring experience and, thus, offspring development. Based on lab and field studies, all three species placed brood balls deeper in the soil in response to warmer and more variable temperatures, but for some species, the greater burial depth came at a cost to brood ball size and/or number, which can impact fitness. Despite greater burial depths, offspring in brood balls in the heated treatments still experienced warmer mean temperatures, which had a large, negative effect on offspring survival of the species with the smallest body size. These findings suggest adult behaviors could partially shield developing offspring from temperature changes. 
    more » « less
  2. By influencing offspring development and survival, parental effects have the potential to aid responses to rapid environmental change. We examined whether Onthophagus taurus dung beetles modified breeding behaviors in response to climate change conditions, and as a result, buffered their offspring from increasing temperatures during development. We conducted a breeding experiment under miniature greenhouses in the field and tracked female reproductive behaviors and offspring phenotype and survival. Dung beetles lay eggs inside of brood balls made of dung and bury them underground. Burial depth influences the temperatures offspring experience during development – with deeper depths offering cooler, less variable temperatures – which can have profound effects on development. We put females in ambient or greenhouse treatments and measured brood ball production, mass, and burial depth.We allowed offspring to develop underground at the maternal burial depth until eclosion, and measured offspring survival, mass, and sex. Females in the greenhouse treatment buried brood balls deeper than those in the ambient treatment, such that offspring developed at similar temperatures in both treatments. As a result, offspring survival was similar between treatments, but body size was smaller, and more females were produced in the greenhouse treatment. Our results demonstrate that parental effects can buffer offspring survival from climate change, underscoring the importance of plasticity in climate change responses. 
    more » « less
  3. Abstract Anthropogenic changes are often studied in isolation but may interact to affect biodiversity. For example, climate change could exacerbate the impacts of biological invasions if climate change differentially affects invasive and native species. Behavioural plasticity may mitigate some of the impacts of climate change, but species vary in their degree of behavioural plasticity. In particular, invasive species may have greater behavioural plasticity than native species since plasticity helps invasive species establish and spread in new environments. This plasticity could make invasives better able to cope with climate change.Here our goal was to examine whether reproductive behaviours and behavioural plasticity vary between an introduced and a nativeOnthophagusdung beetle species in response to warming temperatures and how differences in behaviour influence offspring survival.Using a repeated measures design, we exposed small colonies of introducedO. taurusand nativeO. hecateto three temperature treatments, including a control, low warming and high warming treatment, and then measured reproductive behaviours, including the number, size and burial depth of brood balls. We reared offspring in their brood balls in developmental temperatures that matched those of the brood ball burial depth to quantify survival.We found that the introducedO. taurusproduced more brood balls and larger brood balls, and buried brood balls deeper than the nativeO. hecatein all treatments. However, the two species did not vary in the degree of behavioural plasticity in response to warming. Differences in reproductive behaviours did affect survival such that warming temperatures had a greater effect on survival of offspring of nativeO. hecatecompared to introducedO. taurus.Overall, our results suggest that differences in behaviour between native and introduced species are one mechanism through which climate change may exacerbate negative impacts of biological invasions. 
    more » « less
  4. Dung beetles, which move and bury the feces of vertebrates, are major drivers of ecosystem processes and provide crucial ecosystem services, including secondary seed dispersal. Dung beetles bury seed-containing dung in food caches or in brood balls used for breeding purposes, but little is known about how this behavior will be affected by climate change. We utilized field manipulations to investigate the effect of simulated climate change—including simultaneous increases in temperature mean and variance—on the seed dispersal behavior of two tunneling dung beetle species, Phanaeus vindex and Onthophagus taurus. We placed single adult females into either control or greenhouse treatments along with temperature loggers. We mixed glass beads of three sizes into cow dung to mimic seeds, provided beetles with the dung, and then allowed them to bury dung for either six or nine days. At the end of each trial, we recorded information on dung deposits, including the type (i.e., food cache or brood ball), number, size, burial depth, and the amount of each bead size found in the deposit. We found differences in burial depths of brood balls and food caches within species, as well as differences in the size and amount of beads buried between species. Exposure to higher temperatures resulted in brood balls being buried deeper across species, but did not change the burial depth of food caches. 
    more » « less
  5. Abstract Natural variation can provide important insights into the genetic and environmental factors that shape social behaviour and its evolution. The sweat bee,Lasioglossum baleicum, is a socially flexible bee capable of producing both solitary and eusocial nests. We demonstrate that within a single nesting aggregation, soil temperatures are a strong predictor of the social structure of nests. Sites with warmer temperatures in the spring have a higher frequency of social nests than cooler sites, perhaps because warmer temperatures provide a longer reproductive window for those nests. To identify the molecular correlates of this behavioural variation, we generated a de novo genome assembly forL. baleicum, and we used transcriptomic profiling to compare adults and developing offspring from eusocial and solitary nests. We find that adult, reproductive females have similar expression profiles regardless of social structure in the nest, but that there are strong differences between reproductive females and workers from social nests. We also find substantial differences in the transcriptomic profiles of stage‐matched pupae from warmer, social‐biased sites compared to cooler, solitary‐biased sites. These transcriptional differences are strongly predictive of adult reproductive state, suggesting that the developmental environment may set the stage for adult behaviours inL. baleicum. Together, our results help to characterize the molecular mechanisms shaping variation in social behaviour and highlight a potential role of environmental tuning during development as a factor shaping adult behaviour and physiology in this socially flexible bee. 
    more » « less