A modification of energy dispersive X‐ray fluorescence (ED‐XRF) for analysis of trace element concentrations in suspended particulate matter (SPM) in seawater and intercomparison with high‐resolution inductively coupled plasma‐mass spectrometry (HR ICP‐MS) is presented. Approximately 250 SPM samples were collected on polycarbonate track‐etched filters in the Indian Ocean during the U.S. CLIVAR/CO2Repeat Hydrography meridional section I09N cruise in 2007. Samples were first analyzed by ED‐XRF, a nondestructive technique, for Al, P, Ti, Mn, Fe, Ni, Cu, and Zn and subsequently digested and quantified by HR ICP‐MS, creating two blind, basin‐scale data sets used for a paired statistical comparison. Our results found (1) ED‐XRF analysis using thin‐film principles can quantify the elemental composition of SPM at nanomolar concentrations found in the open ocean; (2) there was excellent agreement between ED‐XRF and HR ICP‐MS analyses for Al, Fe, and Mn and good agreement for P and Ti; (3) analytical differences were the largest for Cu, Ni, and Zn; (4) HR ICP‐MS methods have lower detection limits for most elements when compared to the ED‐XRF; (5) ED‐XRF analysis has a closer agreement to reported values for the NIST SRM 2783 standard and lower relative standard deviations when compared to the HR ICP‐MS. We recommend continued refinement of nondestructive ED‐XRF methods as this would allow for the easy exchange of filtered samples between lab groups for intercalibration and intercomparison of basin‐scale hydrographic cruises and archival for future analysis.
The rare earth elements (REEs) are widely used as geochemical tracers in the earth, planetary, and ocean sciences. Inductively coupled plasma‐mass spectrometry (ICP‐MS) has become the method of choice to analyze REE concentrations because it can rapidly measure the entire REE spectrum at the same time. This Technical Report presents a user‐friendly “REE Calculation Workbook” in Microsoft Excel to be used for calculating REE abundances in samples equilibrated with a multielement REE spike. This Workbook can be conveniently used to calculate REE concentrations in natural samples for spiked and unspiked elements measured by ICP‐MS. For the spiked elements, their concentrations are calculated using isotope dilution equations. Using these spiked elements as references, concentrations of the four mono‐isotopic REE elements, and other REE elements that are treated as mono‐isotopic elements (in our case, La and Lu), can be calculated. The REE Workbook can be easily set up for use with different REE spikes. Evaluation of our analytical quality using a quadrupole ICP‐MS on 10‐ml‐sized seawater samples shows that our analyses are comparable to high‐precision thermal ionization mass spectrometry (TIMS) studies, with much less time spent processing and analyzing, and with the added advantages of determining mono‐isotopic elements. An important result is the clear demonstration of enrichments in Gd and Er compared to neighboring elements in seawater samples. In addition, we compare and evaluate commonly used reference standards BCR‐1, Post‐Archean Australian Shale (PAAS), and North American Shale Composite (NASC).
more » « less- NSF-PAR ID:
- 10380494
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 21
- Issue:
- 9
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Quantitative analysis of multi-element concentrations in aqueous solutions, such as water, beverages and biofluids, has long been performed by sequential inductively coupled plasma-mass spectrometry. Recently, a fully simultaneous mass spectrum monitoring ICP-MS instrument that fits a compact Mattauch–Herzog geometry (MH-ICP-MS) with a permanent magnet and a large, spatially resolving semiconductor ion detector has been introduced. This technology allows coverage of the complete inorganic relevant mass range from 6 Li to 238 U in a single measurement, which helps to mitigate the restriction on the number of inorganic elements whose concentrations may be routinely measured from one sample, thus reducing operational assay times and aqueous sample volumes for evaluations across the breadth of the periodic table. We report here on a detailed method for utilizing MH-ICP-MS to detect all elements of the relevant inorganic spectrum in aqueous samples; 7 types of water, 4 types of beverage, and 4 biofluid biological samples. With this method 71 elements can be routinely detected simultaneously in seconds and in as little as 1–4 mL sample, when using a specific set of calibration and internal standards. Quantitative results reveal distinct element patterns between each sample and within types of samples, suggesting that different types of aqueous solutions can be recognized and distinguished by their elemental patterns. The method has implications for understanding elemental distribution and concentration for many fields, including nutrition, studies of the biosphere, ecological stoichiometry, and environmental health fields, among others, where broad elemental information is actually required.more » « less
-
Rare earth element (REE) deposits are found in association with carbonatite and alkaline systems, where metasomatism plays a significant role in the late-stage transport and enrichment of REE [1]. Fluorite is a common gangue mineral in these mineral deposits and can incorporate varying REE concentrations by substitutions of REE3+ for Ca2+. Fluorite-hosted fluid inclusions contain significant REE concentrations [2], providing a potential record of the hydrothermal ore-forming fluids. The fluorite-fluid REE partitioning mechanisms, however, are largely unknown. To date, only one study [3] measured the partitioning of REE between fluorite and aqueous fluid at 60 °C. Here, we evaluate these REE partitioning mechanisms by combining laboratory experiments with characteristics of natural fluid inclusions that provide a range of salinities and homogenization temperatures relevant to natural systems. Batch-type experiments will be conducted between 100 and 250 °C in Teflon-lined reactors, in which millimeter-sized natural fluorite crystals (Cooke’s Peak, New Mexico) will be reacted with fluids of varying initial REE concentration, pH, and salinity. Kinetic experiments were carried out at 150 °C to test for attainment of a steady state between the fluorite crystals and the aqueous solutions. The reacted fluorite crystals will be studied using SEM, CL and EMPA. Major cations and anions in the quenched fluids will be analyzed using IC and ICP-OES; REE will be determined using solution ICP-MS. These results will permit deriving REE fluorite-fluid partition coefficients. Fluid inclusions in hydrothermal fluorite veins from the fluorite-bastnäsite REE deposits in the Gallinas Mountains in New Mexico are studied to constrain temperatures, salinities, and REE concentrations of hydrothermal ore-forming fluids in alkaline systems. Fluid inclusion assemblages were identified in growth zones and will be further studied using microthermometry. Previous studies found maximum temperatures of 400 °C in sulfate-rich NaCl-KCl brines [4]. The goal will be to link partition coefficients derived from the experiments to the REE partitioning behavior found in the natural fluorite. [1] Gysi et al. (2016), Econ. Geol. 111, 1241-1276; [2] Vasyukova and Williams-Jones (2018) Chem. Geol. 483, 385-396; [3] van Hinsberg et al. (2010), Geology 38, 847-850; [4] Williams-Jones et al. (2000), Econ. Geol. 95, 327-341.more » « less
-
Romano, C (Ed.)Monazite and xenotime are common metamorphic phases that may be reliably U/Th-Pb dated to obtain absolute ages. The utility of these minerals is significantly enhanced if a crystallization thermometer can be developed and applied to better establish the temperature-time (T-t) paths of crustal terranes. Here we report experiments in which we have modeled the T-dependent Rare Earth element (REE) cationic exchange between coexisting monazite and xenotime to derive a new thermometer. We present a thermometer in which phosphates were cocrystallized from 1150 ◦C to 850 ◦C at 1 GPa in a Y-REE-P2O5-NaCl-H2O system, with oxygen fugacity buffered at the Ni-NiO equilibrium. The composition of the phosphates was quantified using a laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS). Results reveal strong correlations between log10 (Π XLREE Xnt ×XY Π Mzt XLREE Mzt ×XY Mzt ) (at. %) and 104/T(K) and our preferred calibration is: log (ΠXLREE Xnt × XY Π Mzt XLREE Mzt × XY Mzt ) = ( 6714 ± 2264) T (K) (0.79±1.76) where LREE = La, Ce and Pr, α = activity of a cation in a phase, and ΠαY/REE Mzt/Xnt refers to the product of activities of Y and/or REEs in a phosphate phase. The errors are 2 s.e. The greatest strength of this thermometer is its versatility. One can obtain derivative thermometers based on select elements rather than the entire suite of REEs. We showcase our thermometer’s adaptability by applying it to two studies that have published REE data on monazite and xenotime from some quartzo-feldspathic psammites and garnet-bearing pelites that experienced amphibolite facies metamorphism from the Naver nappe in the Northern Highlands Terrane, Scotland. The main calibration shown above, as well as four derivative single-element thermometers (Y, La, Ce and Pr) were applied to the first study. Upon applying these thermometers, we find that the calculated metamorphic Ts agree well with the regional metamorphic facies. Thus, this versatile thermometer can be used in geologic environments where monazite and xenotime co-crystallized.more » « less
-
Isotope ratio analyses of trace elements are applied to tooth enamel, ostrich eggshell, and other archaeological hard tissues to infer mobility and other aspects of hominin and animal paleoecology. It has been assumed that these highly mineralized tissues are resistant to diagenetic alteration, but this is seldom tested and some studies document diagenetic alteration over brief time spans. Here, we build on existing research on Maximum Threshold Concentrations (MTCs) to develop screening tools for diagenesis that can inform heavy isotopic analyses. The premise of the MTC approach is that archaeological tissues are likely contaminated and unsuitable for isotope ratio analysis when they exceed characteristic modern concentration ranges of trace elements. Furthermore, we propose a new metric called the Maximum Threshold Ratio (MTR) of 85Rb/88Sr or whole element Rb/Sr, which can be measured simultaneously with 87Sr/86Sr during laser ablation (LA) MC-ICP-MS or applied during post hoc screening of specimens. We analyzed 56 enamel samples from modern Kenyan mammals and 34 modern ostrich eggshells from South Africa, Namibia, and the United States by solution ICP-MS, as well as a subset of shells using LA-MC-ICP-MS. Our results indicate that thresholds are consistent across taxa at a single location, but likely vary across locations. Therefore, MTCs and MTRs need to be tissue and locality specific, but not necessarily taxon-specific. Other important differences are observed between the inner and outer surfaces of the eggshells and between LA and solution ICP-MS. This exploratory study provides guidelines for building reference thresholds to screen enamel and eggshell for diagenesis potentially impacting biogenic isotope ratios.more » « less