skip to main content

Title: Local adaptation in the transgenerational response to copper pollution in the bryozoan Bugula neritina

Transgenerational plasticity (TGP)—when a parent or previous generation's environmental experience affects offspring phenotype without involving a genetic change—can be an important mechanism allowing for rapid adaptation. However, despite increasing numbers of empirical examples of TGP, there appears to be considerable variation in its strength and direction, yet limited understanding of what causes this variation. We compared patterns of TGP in response to stress across two populations with high versus low historical levels of stress exposure. Specifically, we expected that exposure to acute stress in the population experiencing historically high levels of stress would result in adaptive TGP or alternatively fixed tolerance (no parental effect), whereas the population with low levels of historical exposure would result in negative parental carryover effects. Using a common sessile marine invertebrate,Bugula neritina, and a split brood design, we exposed parents from both populations to copper or control treatments in the laboratory and then had them brood copper‐naïve larvae. We then exposed half of each larval brood to copper and half to control conditions before allowing them to grow to maturity in the field. Maternal copper exposure had a strong negative carryover effect on adult offspring growth and survival in the population without historical exposure, especially when larvae themselves were exposed to copper. We found little to no maternal or offspring treatment effect on adult growth and survival in the population with a history of copper exposure. However, parents from this population produced larger larvae on average and were able to increase the size of their larvae in response to copper exposure, providing a potential mechanism for maintaining fitness and suggesting TGP through maternal provisioning. These results indicate that the ability to adjust offspring phenotype via TGP may be a locally adapted trait and potentially influenced by past patterns of exposure.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the mechanisms by which individual organisms respond and populations adapt to global climate change is a critical challenge. The role of plasticity and acclimation, within and across generations, may be essential given the pace of change. We investigated plasticity across generations and life stages in response to ocean acidification (OA), which poses a growing threat to both wild populations and the sustainable aquaculture of shellfish. Most studies of OA on shellfish focus on acute effects, and less is known regarding the longer term carryover effects that may manifest within or across generations. We assessed these longer term effects in red abalone (Haliotis rufescens) using a multi‐generational split‐brood experiment. We spawned adults raised in ambient conditions to create offspring that we then exposed to high pCO2(1180 μatm; simulating OA) or low pCO2(450 μatm; control or ambient conditions) during the first 3 months of life. We then allowed these animals to reach maturity in ambient common garden conditions for 4 years before returning the adults into high or low pCO2treatments for 11 months and measuring growth and reproductive potential. Early‐life exposure to OA in the F1 generation decreased adult growth rate even after 5 years especially when abalone were re‐exposed to OA as adults. Adult but not early‐life exposure to OA negatively impacted fecundity. We then exposed the F2 offspring to high or low pCO2treatments for the first 3 months of life in a fully factorial, split‐brood design. We found negative transgenerational effects of parental OA exposure on survival and growth of F2 offspring, in addition to significant direct effects of OA on F2 survival. These results show that the negative impacts of OA can last within and across generations, but that buffering against OA conditions at critical life‐history windows can mitigate these effects.

    more » « less
  2. Abstract

    Larvae of marine calcifying organisms are particularly vulnerable to the adverse effects of elevatedpCO2on shell formation because of their rapid calcification rates, reduced capacity to isolate calcifying fluid from seawater, and use of more soluble polymorphs of calcium carbonate. However, parental exposure to elevatedpCO2could benefit larval shell formation through transgenerational plastic responses. We examined the capacity of intergenerational exposure to mitigate the adverse effects of elevatedpCO2on Eastern oyster (Crassostrea virginica) early larval shell growth, shell morphology, and survival. Adult oysters were exposed to control (572 ppmpCO2) or elevatedpCO2(2827 ppmpCO2) conditions for 30 d during reproductive conditioning. Offspring from each parental treatment were produced using a partial North Carolina II cross design and grown under control and elevatedpCO2conditions for 3 d. We found evidence of transgenerational plasticity in early larval shell growth and morphology, but not in survival, in response to the parentalpCO2exposure. Larvae from parents exposed to elevatedpCO2exhibited faster shell growth rates than larvae from control parents, with this effect being significantly larger when larvae were grown under elevatedpCO2compared to control conditions. Parental exposure to elevatedpCO2, however, was insufficient to completely counteract the adverse effects of the prescribed elevatedpCO2on early larval shell formation and survival. Nevertheless, these results suggest that oysters have some capacity to acclimate intergenerationally to ocean acidification.

    more » « less
  3. Kelp forests of the California Current System have experienced prolonged marine heatwave (MHW) events that overlap in time with the phenology of life history events (e.g., gametogenesis and spawning) of many benthic marine invertebrates. To study the effect of thermal stress from MHWs during gametogenesis in the purple sea urchin ( Strongylocentrotus purpuratus ) and further, whether MHWs might induce transgenerational plasticity (TGP) in thermal tolerance of progeny, adult urchins were acclimated to two conditions in the laboratory – a MHW temperature of 18°C and a non-MHW temperature of 13°C. Following a four-month long acclimation period (October–January), adults were spawned and offspring from each parental condition were reared at MHW (18°C) and non-MHW temperatures (13°C), creating a total of four embryo treatment groups. To assess transgenerational effects for each of the four groups, we measured thermal tolerance of hatched blastula embryos in acute thermal tolerance trials. Embryos from MHW-acclimated females were more thermally tolerant with higher LT 50 values as compared to progeny from non-MHW-acclimated females. Additionally, there was an effect of female acclimation state on offspring body size at two stages of embryonic development - early gastrulae and prism, an early stage echinopluteus larvae. To assess maternal provisioning as means to also alter embryo performance, we assessed gamete traits from the differentially acclimated females, by measuring size and biochemical composition of eggs. MHW-acclimated females had eggs with higher protein concentrations, while egg size and lipid content showed no differences. Our results indicate that TGP plays a role in altering the performance of progeny as a function of the thermal history of the female, especially when thermal stress coincides with gametogenesis. In addition, the data on egg provisioning show that maternal experience can influence embryo traits via egg protein content. Although this is a laboratory-based study, the results suggest that TGP may play a role in the resistance and tolerance of S. purpuratus early stages in the natural kelp forest setting. 
    more » « less
  4. Abstract

    Although environmental variability and predictability have been proposed as the underlying ecological context in which transgenerational plasticity (TGP) arises, the adaptive significance and interaction with within‐generation plasticity (WGP) in such scenarios is still poorly understood. To investigate these questions, we considered the tolerance to upper thermal limits of larvae and adults of the desert endemicDrosophila mojavensisadapted to different climatic regions (Desert vs. Mediterranean climate).

    Thermal plasticity was investigated by acclimating parents and offspring at 36°C (vs. at 25°C). We then used historical temperature variation data from both regions to perform individual‐based simulations by modelling expected components of adaptive plasticity in multiple life stages.

    Our results indicated that thermal response to ramping heat shocks was more pronounced in larvae, where acclimation treatments in parents and offspring increased their heat‐shock performance, while heat knockdown in adults was only increased by offspring acclimation of adults. The relative contribution ofWGPandTGPwas greater for the population from the more thermally variable Sonoran Desert.

    Similarly, individual‐based simulations of evolving maternal effects indicated that variation in tolerance to upper thermal limits across life stages and climates is expected from its adaptive significance in response to environmental predictability.

    Our approach offers a new perspective and interpretation of adaptive plasticity, demonstrating that environmental predictability can drive thermal responses across generations and life stages in a scenario with regional climate variability.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less
  5. Abstract

    Anthropogenic noise has increased underwater ambient sound levels in the range in which most fishes detect and produce acoustic signals. Although the impacts of increased background noise on fish development have been studied in a variety of species, there is a paucity of information on how noise affects parental care. Mouthbrooding is an energetically costly form of parental care in which the brooding fish carries developing larvae in the buccal cavity for the duration of development. In the African cichlidAstatotilapia burtoni, females carry their brood for ~2 weeks during which time they do not eat. To test the hypothesis that increased background noise impacts maternal care behaviors and brood development, we exposed brooding females to a 3‐h period of excess noise (~140 dB) played through an underwater speaker. Over half of noise‐exposed brooding females cannibalized or pre‐maturely released their brood, but 90% of control females exhibited normal brooding behaviors. RNA‐seq analysis revealed that transcripts related to feeding and parental care were differentially expressed in the brains of noise‐exposed females. Juveniles that were exposed to noise during their brood period within the mother's mouth had lower body condition factors, higher mortality and altered head transcriptomes compared with control broods. Furthermore, onset of adult‐typical coloration and behaviors was delayed compared with control fish. Together, these data indicate that noise has severe impacts on reproductive fitness in mouthbrooding females. Our results, combined with past studies, indicate that parental care stages are extremely susceptible to noise‐induced perturbations with detrimental effects on species persistence.

    more » « less