A search for supersymmetry involving the pair production of gluinos decaying via off-shell third-generation squarks into the lightest neutralino
Maize (
In this study, four ear traits associated with corn production of Nested Association Mapping (NAM) population were analyzed using a full genetic model, and further, optimal genotype combinations and total genetic effects of current best lines, superior lines, and superior hybrids were predicted for each of the traits at four different locations. The analysis identified 21–34 highly significant SNPs (−
Predictions of genetic breeding values showed that different genotype combinations in different geographical regions may be better, and hybrid-line variety breeding with homozygote and heterozygote genotype combinations may have a greater potential to improve ear traits.
- NSF-PAR ID:
- 10380737
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- BMC Plant Biology
- Volume:
- 22
- Issue:
- 1
- ISSN:
- 1471-2229
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract is reported. It exploits LHC proton–proton collision data at a centre-of-mass energy$$(\tilde{\chi }^0_1)$$ TeV with an integrated luminosity of 139 fb$$\sqrt{s} = 13$$ collected with the ATLAS detector from 2015 to 2018. The search uses events containing large missing transverse momentum, up to one electron or muon, and several energetic jets, at least three of which must be identified as containing$$^{-1}$$ b -hadrons. Both a simple kinematic event selection and an event selection based upon a deep neural-network are used. No significant excess above the predicted background is found. In simplified models involving the pair production of gluinos that decay via off-shell top (bottom) squarks, gluino masses less than 2.44 TeV (2.35 TeV) are excluded at 95% CL for a massless Limits are also set on the gluino mass in models with variable branching ratios for gluino decays to$$\tilde{\chi }^0_1.$$ $$b\bar{b}\tilde{\chi }^0_1,$$ and$$t\bar{t}\tilde{\chi }^0_1$$ $$t\bar{b}\tilde{\chi }^-_1/\bar{t}b\tilde{\chi }^+_1.$$ -
Abstract We explain recent LHCb measurements of the lepton universality ratios,
and$$R_{D^{(*)}}^{\tau /\ell }\equiv \frac{\mathcal {B}(\bar{B} \rightarrow D^{(*)+} \tau ^- \bar{\nu }_\tau )}{\mathcal {B}(\bar{B} \rightarrow D^{(*)+}\ell ^- \bar{\nu }_\ell )}$$ with$${R(\Lambda _c^+)}^{\tau /\ell } \equiv \frac{\mathcal {B}(\Lambda _b \rightarrow \Lambda _c^+ \tau ^- \bar{\nu }_{\tau })}{\mathcal {B}(\Lambda _b \rightarrow \Lambda _c^+ \ell ^- \bar{\nu }_{\ell })}$$ , via new physics that affects$$\ell =\mu $$ and$$R_D^{\tau /\ell }$$ but not$$R(\Lambda _c^+)^{\tau /\ell }$$ . The scalar operator in the effective theory for new physics is indicated. We find that the forward-backward asymmetry and$$R_{D^*}^{\tau /\ell }$$ polarization in$$\tau $$ and$$\bar{B} \rightarrow D^+ \tau ^{-} \bar{\nu }_{\tau }$$ decays are significantly affected by the scalar interaction. We construct a simple two Higgs doublet model as a realization of our scenario and consider lepton universality in semileptonic charm and top decays, radiative$$\Lambda _b \rightarrow \Lambda _c^+ \tau ^- \bar{\nu }_{\tau }$$ B decay,B -mixing, and .$$Z \rightarrow b \bar{b}$$ -
A search for hidden-charm pentaquark states decaying to a range ofandfinal states, as well as doubly charmed pentaquark states toand, is made using samples of proton-proton collision data corresponding to an integrated luminosity ofrecorded by the LHCb detector at. Since no significant signals are found, upper limits are set on the pentaquark yields relative to that of thebaryon in thedecay mode. The known pentaquark states are also investigated, and their signal yields are found to be consistent with zero in all cases.
© 2024 CERN, for the LHCb Collaboration 2024 CERN -
Abstract Magnetized plasma columns and extended magnetic structures with both footpoints anchored to a surface layer are an important building block of astrophysical dissipation models. Current loops shining in X-rays during the growth of plasma instabilities are observed in the corona of the Sun and are expected to exist in highly magnetized neutron star magnetospheres and accretion disk coronae. For varying twist and system sizes, we investigate the stability of line-tied force-free flux tubes and the dissipation of twist energy during instabilities using linear analysis and time-dependent force-free electrodynamics simulations. Kink modes (
m = 1) and efficient magnetic energy dissipation develop for plasma safety factorsq ≲ 1, whereq is the inverse of the number of magnetic field line windings per column length. Higher-order fluting modes (m > 1) can distort equilibrium flux tubes forq > 1 but induce significantly less dissipation. In our analysis, the characteristic pitch of flux-tube field lines determines the growth rate ( ) and minimum wavelength of the kink instability ( ). We use these scalings to determine a minimum flux tube length for the growth of the kink instability for any given . By drawing analogies to idealized magnetar magnetospheres with varying regimes of boundary shearing rates, we discuss the expected impact of the pitch-dependent growth rates for magnetospheric dissipation in magnetar conditions. -
We report a measurement of decay-time-dependent charge-parity () asymmetries indecays. We usepairs collected at theresonance with the Belle II detector at the SuperKEKB asymmetric-energy electron-positron collider. We reconstruct 220 signal events and extract the-violating parametersandfrom a fit to the distribution of the decay-time difference between the twomesons. The resulting confidence region is consistent with previous measurements inanddecays and with predictions based on the standard model.
Published by the American Physical Society 2024