Abstract Solid tumors develop within a complex environment called the tumor microenvironment (TME), which is sculpted by the presence of other cells, such as cancer‐associated fibroblasts (CAFs) and immune cells like macrophages (Mφs). Despite the presence of immune cells, tumor cells orchestrate a tumor‐supportive environment through intricate interaction with the components of the TME. However, the specific mechanism by which this intercellular dialogue is regulated is not fully understood. To that end, the development of an organotypic 3D breast TME‐on‐a‐chip (TMEC) model, integrated with single‐cell RNA sequencing analysis, is reported to mechanistically evaluate the progression of triple‐negative breast cancer (TNBC) cells in the presence of patient‐derived CAFs and Mφs. Extensive functional assays, including invasion and morphometric characterization, reveal the synergistic influence of CAFs and Mφs on tumor cells. Furthermore, gene expression and pathway enrichment analyses identify the involvement of theKYNUgene, suggesting a potential immune evasion mechanism through the kynurenine pathway. Lastly, the pharmacological targeting of the identified pathway is investigated.
more »
« less
Optimal therapy design with tumor microenvironment normalization
Abstract Tumor microenvironment (TME) normalization improves efficacy by increasing anticancer nanocarrier delivery by restoring transvascular pressure gradients that induce convection. However, transport depends on TME biophysics, normalization dose, and nanocarrier size. With increased understanding, we could use computation to personalize normalization amount and nanocarrier size. Here, we use deterministic global dynamic optimization with novel bounding routines to validate mechanistic models againstin vivodata. We find that normalization with dexamethasone increases the maximum transvascular convection rate of nanocarriers by 48‐fold, the tumor volume fraction with convection by 61%, and the total amount of convection by 360%. Nonetheless, 22% of the tumor still lacks convection. These findings underscore both the effectiveness and limits of normalization. Using artificial neural network surrogate modeling, we demonstrate the feasibility of rapidly determining the dexamethasone dose and nanocarrier size to maximize accumulation. Thus, this digital testbed quantifies transport and performs therapy design.
more »
« less
- Award ID(s):
- 1932723
- PAR ID:
- 10380789
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- AIChE Journal
- Volume:
- 68
- Issue:
- 8
- ISSN:
- 0001-1541
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The prognostic and therapeutic value of the tumor microenvironment (TME) in various cancer types is of major interest. Characterization of the TME often relies on a small representative tissue sample. However, the adequacy of such a sample for assessing components of the TME is not yet known. Here, we used immunohistochemical (IHC) staining and 7-color multiplex staining to evaluate CD8 (cluster of differentiation 8), CD68, PD-L1 (programmed death-ligand 1), CD34, FAP (fibroblast activation protein), and cytokeratin in 220 tissue cores from 26 high-grade serous ovarian cancer samples. Comparisons were drawn between a larger tumor specimen and smaller core biopsies based on number and location (central tumor vs. peripheral tumor) of biopsies. Our analysis found that the correlation between marker-specific cell subsets in larger tumorversussmaller core was stronger with two core biopsies and was not further strengthened with additional biopsies. Moreover, this correlation was consistently strong regardless of whether the biopsy was taken at the center or at the periphery of the original tumor sample. These findings could have a substantial impact on longitudinal assessment for detection of biomarkers in clinical trials.more » « less
-
Abstract Abnormal cancer metabolism causes hypoxic and immunosuppressive tumor microenvironment (TME), which limits the antitumor efficacy of photodynamic therapy (PDT). Herein, we report a photosensitizing nanoscale metal–organic layer (MOL) with anchored 3‐bromopyruvate (BrP), BrP@MOL, as a metabolic reprogramming agent to enhance PDT and antitumor immunity. BrP@MOL inhibited mitochondrial respiration and glycolysis to oxygenate tumors and reduce lactate production. This metabolic reprogramming enhanced reactive oxygen species generation during PDT and reshaped the immunosuppressive TME to enhance antitumor immunity. BrP@MOL‐mediated PDT inhibited tumor growth by >90 % with 40 % of mice being tumor‐free, rejected tumor re‐challenge, and prevented lung metastasis. Further combination with immune checkpoint blockade potently regressed the tumors with >98 % tumor inhibition and 80 % of mice being tumor‐free.more » « less
-
Abstract The tumor microenvironment (TME) is an immensely complex ecosystem1,2. This complexity underlies difficulties in elucidating principles of spatial organization and using molecular profiling of the TME for clinical use3. Through statistical analysis of 96 spatial transcriptomic (ST-seq) datasets spanning twelve diverse tumor types, we found a conserved distribution of multicellular, transcriptionally covarying units termed ‘Spatial Groups’ (SGs). SGs were either dependent on a hierarchical local spatial context – enriched for cell-extrinsic processes such as immune regulation and signal transduction – or independent from local spatial context – enriched for cell-intrinsic processes such as protein and RNA metabolism, DNA repair, and cell cycle regulation. We used SGs to define a measure of gene spatial heterogeneity – ‘spatial lability’ – and categorized all 96 tumors by their TME spatial lability profiles. The resulting classification captured spatial variation in cell-extrinsic versus cell-intrinsic biology and motivated class-specific strategies for therapeutic intervention. Using this classification to characterize pre-treatment biopsy samples of 16 non-small cell lung cancer (NSCLC) patients outside our database distinguished responders and non-responders to immune checkpoint blockade while programmed death-ligand 1 (PD-L1) status and spatially unaware bulk transcriptional markers did not. Our findings show conserved principles of TME spatial biology that are both biologically and clinically significant.more » « less
-
Abstract The prognosis of glioblastoma multiforme (GBM) remains dismal, despite standard treatment regimens. A key challenge in treating GBM is the persistence of glioma stem cells (GSCs) within the perivascular niche (PVN) – a protective tumor microenvironment (TME) that is often associated with inadequate drug penetration. Current preclinical models do not capture complexity of the human TME, particularly the vasculature and niche‐specific interactions that drive GBM progression. To overcome these limitations, an innovative 3Dex‐vivotumor‐on‐a‐chip (TOC) platform is engineered to accurately replicate the structural and functional characteristics of the PVN. Using this platform, this study demonstrates that monocyte membrane‐coated nanoparticles (MoNP) effectively target the abnormal tumor microvasculature, offering a promising approach to enhance drug delivery to these hard‐to‐reach GSCs. The results show that the therapeutic agent verteporfin, when delivered via MoNP, significantly inhibited GSC growth and invasiveness, while the free‐form drug showed minimal efficacy. Comprehensive transcriptomic profiling and cytokine analysis validated the TOC model's ability to reflect authentic GSC responses and confirmed that MoNP‐mediated verteporfin delivery effectively modulates key tumor‐related signaling pathways. This integrated TOC‐MoNP platform represents a clinically relevant tool that bridges the gap between traditional preclinical models and human disease, providing new opportunities for developing more effective GBM therapies.more » « less
An official website of the United States government
