- Award ID(s):
- 1955876
- PAR ID:
- 10380877
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We report sequential ruthenium(0)-catalysis for the synthesis of sterically-hindered amines via direct C–H arylation of simple imines and imine hydrosilylation. The method involves direct C–H arylation under neutral conditions with organoboranes enabled by ruthenium(0) catalysis. The catalytic hydrosilylation was performed in a one-pot fashion using Et 3 SiH. The reaction is compatible with a broad range of electronically- and sterically-varied imines, enabling rapid production of valuable biaryl amines in good to excellent yields. The method constitutes a two-step, one-pot procedure to synthesize sterically-hindered amines from aldehydes. The utility of this atom-economic strategy is demonstrated in one-pot, three-component coupling, direct in situ aldehyde arylation and the use of transfer hydrogenation.more » « less
-
Rh(I)‐catalyzed C8‐selective C−H alkenylation and arylation of 1,2,3,4‐tetrahydroquinolines with alkenyl and aryl carboxylic acids under microwave assistance have been realized. Using [Rh(CO)2(acac)] as the catalyst and Piv2O as the acid activator, 1,2,3,4‐tetrahydroquinolines undergo C8‐selective decarbonylative C−H alkenylation with a wide range of alkenyl and aryl carboxylic acids, affording the C8‐alkenylated or arylated 1,2,3,4‐tetrahydroquinolines. This method enables the synthesis of C8‐alkenylated 1,2,3,4‐tetrahydroquinolines that would otherwise be difficult to access by means of conventional C−H alkenylation protocols. Moreover, this catalytic system also works well in C8‐selective decarbonylative C−H arylation of 1,2,3,4‐tetrahydroquinolines with aryl carboxylic acids. The catalytic activity strongly depends on the choice of the N‐directing group, with the readily installable and removable N‐(2‐pyrimidyl) group being optimal. The catalytic pathway is elucidated by mechanistic experiments.more » « less
-
Abstract The design of synthetic routes by retrosynthetic logic is decisively influenced by the transformations available. Transition‐metal‐catalyzed C−H activation has emerged as a powerful strategy for C−C bond formation, with myriad methods developed for diverse substrates and coupling partners. However, its uptake in total synthesis has been tepid, partially due to their apparent synthetic intractability, as well as a lack of comprehensive guidelines for implementation. This Review addresses these issues and offers a guide to identify retrosynthetic opportunities to generate C−C bonds by C−H activation processes. By comparing total syntheses accomplished using traditional approaches and recent C−H activation methods, this Review demonstrates how C−H activation enabled C−C bond construction has led to more efficient retrosynthetic strategies, as well as the execution of previously unattainable tactical maneuvers. Finally, shortcomings of existing processes are highlighted; this Review illustrates how some highlighted total syntheses can be further economized by adopting next‐generation ligand‐enabled approaches.
-
Abstract The design of synthetic routes by retrosynthetic logic is decisively influenced by the transformations available. Transition‐metal‐catalyzed C−H activation has emerged as a powerful strategy for C−C bond formation, with myriad methods developed for diverse substrates and coupling partners. However, its uptake in total synthesis has been tepid, partially due to their apparent synthetic intractability, as well as a lack of comprehensive guidelines for implementation. This Review addresses these issues and offers a guide to identify retrosynthetic opportunities to generate C−C bonds by C−H activation processes. By comparing total syntheses accomplished using traditional approaches and recent C−H activation methods, this Review demonstrates how C−H activation enabled C−C bond construction has led to more efficient retrosynthetic strategies, as well as the execution of previously unattainable tactical maneuvers. Finally, shortcomings of existing processes are highlighted; this Review illustrates how some highlighted total syntheses can be further economized by adopting next‐generation ligand‐enabled approaches.
-
null (Ed.)A Cu-catalyzed strategy has been developed that harnesses a radical relay mechanism to intercept a distal C-centered radical for C–C bond formation. This approach enables selective δ C–H (hetero)arylation of sulfonamides via intramolecular hydrogen atom transfer (HAT) by an N-centered radical. The radical relay is both initiated and terminated by a Cu catalyst, which enables incorporation of arenes and heteroarenes by cross-coupling with boronic acids. The broad scope and utility of this catalytic method for δ C–H arylation is shown, along with mechanistic probes for selectivity of the HAT mechanism. A catalytic, asymmetric variant is also presented, as well as a method for accessing 1,1-diaryl-pyrrolidines via iterative δ C–H functionalizations.more » « less