skip to main content


Title: Consistent diel activity patterns of forest mammals among tropical regions
Abstract

An animal’s daily use of time (their “diel activity”) reflects their adaptations, requirements, and interactions, yet we know little about the underlying processes governing diel activity within and among communities. Here we examine whether community-level activity patterns differ among biogeographic regions, and explore the roles of top-down versus bottom-up processes and thermoregulatory constraints. Using data from systematic camera-trap networks in 16 protected forests across the tropics, we examine the relationships of mammals’ diel activity to body mass and trophic guild. Also, we assess the activity relationships within and among guilds. Apart from Neotropical insectivores, guilds exhibited consistent cross-regional activity in relation to body mass. Results indicate that thermoregulation constrains herbivore and insectivore activity (e.g., larger Afrotropical herbivores are ~7 times more likely to be nocturnal than smaller herbivores), while bottom-up processes constrain the activity of carnivores in relation to herbivores, and top-down processes constrain the activity of small omnivores and insectivores in relation to large carnivores’ activity. Overall, diel activity of tropical mammal communities appears shaped by similar processes and constraints among regions reflecting body mass and trophic guilds.

 
more » « less
NSF-PAR ID:
10380923
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Food chain efficiency (FCE), the proportion of primary production converted to production of the top trophic level, can influence several ecosystem services as well as the biodiversity and productivity of each trophic level. AquaticFCEis affected by light and nutrient supply, largely via effects on primary producer stoichiometry that propagate to herbivores and then carnivores. Here, we test the hypothesis that the identity of the top carnivore mediatesFCEresponses to changes in light and nutrient supply.

    We conducted a large‐scale, 6‐week mesocosm experiment in which we manipulated light and nutrient (nitrogen and phosphorus) supply and the identity of the carnivore in a 2 × 2 × 2 factorial design. We quantified the response ofFCEand the biomass and productivity of each trophic level (phytoplankton, zooplankton, and carnivore). We used an invertebrate,Chaoborus americanus, and a vertebrate, bluegill sunfish (Lepomis macrochirus), as the two carnivores in this study because of the large difference in phosphorus requirements between these taxa.

    We predicted that bluegill would be more likely to experience P‐limitation due to higher P requirements, and hence thatFCEwould be lower in the bluegill treatments than in theChaoborustreatments. We also expected the interactive effect of light and nutrients to be stronger in the bluegill treatments. Within a carnivore treatment, we predicted highestFCEunder low light and high nutrient supply, as these conditions would produce high‐quality (low C:nutrient) algal resources. In contrast, if food quantity had a stronger effect on carnivore production than food quality, carnivore production would increase proportionally with primary production, thusFCEwould be similar across light and nutrient treatments.

    Carnivore identity mediated the effects of light and nutrients onFCE, and as predictedFCEwas higher in food chains withChaoborusthan with bluegill. Also as predicted,FCEinChaoborustreatments was higher under low light. However,FCEin bluegill treatments was higher at high light supply, opposite to our predictions. In addition, bluegill production increased proportionally with primary production, whileChaoborusproduction was not correlated with primary production, suggesting that bluegill responded more strongly to food quantity than to food quality. These carnivore taxa differ in traits other than body stoichiometry, for example, feeding selectivity, which may have contributed to the observed differences inFCEbetween carnivores.

    Comparison of our results with those from previous experiments showed thatFCEresponds similarly to light and nutrients in food chains withChaoborusand larval fish (gizzard shad: Clupeidae), but very differently in food chains with bluegill. These findings warrant further investigation into the mechanisms related to carnivore identity (e.g., developmental stage, feeding selectivity) underlying these responses, and highlight the importance of considering both top‐down and bottom‐up effects when evaluating food chain responses to changing light and nutrient conditions.

     
    more » « less
  2. Abstract

    Marine food webs are structured through a combination of top‐down and bottom‐up processes. In coral reef ecosystems, fish size is related to life‐history characteristics and size‐based indicators can represent the distribution and flow of energy through the food web. Thus, size spectra can be a useful tool for investigating the impacts of both fishing and habitat condition on the health and productivity of coral reef fisheries. In addition, coral reef fisheries are often data‐limited and size spectra analysis can be a relatively cost‐effective and simple method for assessing fish populations. Abundance size spectra are widely used and quantify the relationship between organism size and relative abundance. Previous studies that have investigated the impacts of fishing and habitat condition together on the size distribution of coral reef fishes, however, have aggregated all fishes regardless of taxonomic identity. This leads to a poor understanding of how fishes with different feeding strategies, body size‐abundance relationships, or catchability might be influenced by top‐down and bottom‐up drivers. To address this gap, we quantified size spectra slopes of carnivorous and herbivorous coral reef fishes across three regions of Indonesia representing a gradient in fishing pressure and habitat conditions. We show that fishing pressure was the dominant driver of size spectra slopes such that they became steeper as fishing pressure increased, which was due to the removal of large‐bodied fishes. When considering fish functional groups separately, however, carnivore size spectra slopes were more heavily impacted by fishing than herbivores. Also, structural complexity, which can mediate predator‐prey interactions and provisioning of resources, was a relatively important driver of herbivore size spectra slopes such that slopes were shallower in more complex habitats. Our results show that size spectra slopes can be used as indicators of fishing pressure on coral reef fishes, but aggregating fish regardless of trophic identity or functional role overlooks differential impacts of fishing pressure and habitat condition on carnivore and herbivore size distributions.

     
    more » « less
  3. Abstract

    The seasonal movement of animals has been linked to seasonal variation in ecological productivity, and it has been hypothesized that primary consumers synchronize migration with vegetation phenology. Within temperate regions of the Northern Hemisphere, herbivorous bird species often track the phenology of vegetation greenness during spring migration. Phenological synchronization with vegetation greenness by migratory birds in other dietary guilds, across the full extent of their annual distributions during both spring and autumn migration, has not been explored.

    Here, we document population‐level associations with a remotely sensed measure of vegetation greenness for 230 North American migratory bird species in seven dietary guilds across the full annual cycle using eBird occurrence information for the combined period 2006–2018.

    Evidence of phenological synchronization was strongest for omnivores, herbivores, herbivore–granivores and granivores during spring and autumn migration, except for omnivores in the west during spring migration. Strong evidence of synchronization was also observed for insectivores during spring migration and carnivores during spring and autumn migration that migrated across the entire breadth of the continent. The level of evidence declined for insectivores in the west and east during spring migration, and for nectarivores in the west during spring and autumn migration. Limited evidence was also found for insectivores in the east during autumn migration, insectivores in the west and the centre of the continent during spring and autumn migration, and carnivores in the west during spring migration. Carnivores in the west during autumn migration showed the weakest evidence of synchronization.

    We found broad support across an array of dietary guilds for phenological coupling between vegetation greenness and seasonal bird migration within North America. Our results highlight the potential for many migratory bird species to encounter phenological mismatches as vegetation phenology responds to climate change. Our findings emphasize the need to better understand the environmental cues that regulate migratory behaviour across dietary guilds, consumer levels and migration tactics.

     
    more » « less
  4. Abstract

    Climate change is increasing the frequency, severity, and extent of wildfires and drought in many parts of the world, with numerous repercussions for the physical, chemical, and biological characteristics of streams. However, information on how these perturbations affect top predators and their impacts on lower trophic levels in streams is limited.

    The top aquatic predator in southern California streams is nativeOncorhynchus mykiss, the endangered southern California steelhead trout (trout). To examine relationships among the distribution of trout, environmental factors, and stream invertebrate resources and assemblages, we sampled pools in 25 stream reaches that differed in the presence (nine reaches) or absence (16 reaches) of trout over 12 years, including eight reaches where trout were extirpated during the study period by drought or post‐fire flood disturbances.

    Trout were present in deep pools with high water and habitat quality. Invertebrate communities in trout pools were dominated by a variety of medium‐sized collector–gatherer and shredder invertebrate taxa with non‐seasonal life cycles, whereas tadpoles and large, predatory invertebrates (Odonata, Coleoptera, Hemiptera [OCH]), often with atmospheric breather traits, were more abundant in troutless than trout pools.

    Structural equation modelling of the algal‐based food web indicated a trophic cascade from trout to predatory invertebrates to collector–gatherer taxa and weaker direct negative trout effects on grazers; however, both grazers and collector–gatherers also were positively related to macroalgal biomass. Structural equation modelling also suggested that bottom‐up interactions and abiotic factors drove the detritus‐based food web, with shredder abundance being positively related to leaf litter (coarse particulate organic matter) levels, which, in turn, were positively related to canopy cover and negatively related to flow. These results emphasise the context dependency of trout effects on prey communities and of the relative importance of top‐down versus bottom‐up interactions on food webs, contingent on environmental conditions (flow, light, nutrients, disturbances) and the abundances and traits of component taxa.

    Invertebrate assemblage structure changed from a trout to a troutless configuration within a year or two after trout were lost owing to post‐fire scouring flows or drought. Increases in OCH abundance after trout were lost were much more variable after drought than after fire. The reappearance of trout in one stream resulted in quick, severe reductions in OCH abundance.

    These results indicate that climate‐change induced disturbances can result in the extirpation of a top predator, with cascading repercussions for stream communities and food webs. This study also emphasises the importance of preserving or restoring refuge habitats, such as deep, shaded, perennial, cool stream pools with high habitat and water quality, to prevent the extirpation of sensitive species and preserve native biodiversity during a time of climate change.

     
    more » « less
  5. Abstract

    Primary consumers are under strong selection from resource (‘bottom‐up’) and consumer (‘top‐down’) controls, but the relative importance of these selective forces is unknown. We performed a meta‐analysis to compare the strength of top‐down and bottom‐up forces on consumer fitness, considering multiple predictors that can modulate these effects: diet breadth, feeding guild, habitat/environment, type of bottom‐up effects, type of top‐down effects and how consumer fitness effects are measured. We focused our analyses on the most diverse group of primary consumers, herbivorous insects, and found that in general top‐down forces were stronger than bottom‐up forces. Notably, chewing, sucking and gall‐making herbivores were more affected by top‐down than bottom‐up forces, top‐down forces were stronger than bottom‐up in both natural and controlled (cultivated) environments, and parasitoids and predators had equally strong top‐down effects on insect herbivores. Future studies should broaden the scope of focal consumers, particularly in understudied terrestrial systems, guilds, taxonomic groups and top‐down controls (e.g. pathogens), and test for more complex indirect community interactions. Our results demonstrate the surprising strength of forces exerted by natural enemies on herbivorous insects, and thus the necessity of using a tri‐trophic approach when studying insect‐plant interactions.

     
    more » « less