skip to main content

Title: Modeling the dynamics and spatial heterogeneity of city growth
Abstract

We propose a systems model for urban population growth dynamics, disaggregated at the county scale, to explicitly acknowledge inter and intra-city movements. Spatial and temporal heterogeneity of cities are well captured by the model parameters estimated from empirical data for 2005–2019 domestic migration in the U.S. for 46 large cities. Model parameters are narrowly dispersed over time, and migration flows are well-reproduced using time-averaged values. The spatial distribution of population density within cities can be approximated by negative exponential functions, with exponents varying among cities, but invariant over the period considered. The analysis of the rank-shift dynamics for the 3100+ counties shows that the most and least dense counties have the lowest probability of shifting ranks, as expected for ‘closed’ systems. Using synthetic rank lists of different lengths, we find that counties shift ranks gradually via diffusive dynamics, similar to other complex systems.

Authors:
; ;
Publication Date:
NSF-PAR ID:
10381013
Journal Name:
npj Urban Sustainability
Volume:
2
Issue:
1
ISSN:
2661-8001
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The use of systems science methodologies to understand complex environmental and human health relationships is increasing. Requirements for advanced datasets, models, and expertise limit current application of these approaches by many environmental and public health practitioners.

    Methods

    A conceptual system-of-systems model was applied for children in North Carolina counties that includes example indicators of children’s physical environment (home age, Brownfield sites, Superfund sites), social environment (caregiver’s income, education, insurance), and health (low birthweight, asthma, blood lead levels). The web-based Toxicological Prioritization Index (ToxPi) tool was used to normalize the data, rank the resulting vulnerability index, and visualize impacts from each indicator in a county. Hierarchical clustering was used to sort the 100 North Carolina counties into groups based on similar ToxPi model results. The ToxPi charts for each county were also superimposed over a map of percentage county population under age 5 to visualize spatial distribution of vulnerability clusters across the state.

    Results

    Data driven clustering for this systems model suggests 5 groups of counties. One group includes 6 counties with the highest vulnerability scores showing strong influences from all three categories of indicators (social environment, physical environment, and health). A second group contains 15 counties with high vulnerability scores drivenmore »by strong influences from home age in the physical environment and poverty in the social environment. A third group is driven by data on Superfund sites in the physical environment.

    Conclusions

    This analysis demonstrated how systems science principles can be used to synthesize holistic insights for decision making using publicly available data and computational tools, focusing on a children’s environmental health example. Where more traditional reductionist approaches can elucidate individual relationships between environmental variables and health, the study of collective, system-wide interactions can enable insights into the factors that contribute to regional vulnerabilities and interventions that better address complex real-world conditions.

    « less
  2. Abstract Background

    The biophysics of an organism span multiple scales from subcellular to organismal and include processes characterized by spatial properties, such as the diffusion of molecules, cell migration, and flow of intravenous fluids. Mathematical biology seeks to explain biophysical processes in mathematical terms at, and across, all relevant spatial and temporal scales, through the generation of representative models. While non-spatial, ordinary differential equation (ODE) models are often used and readily calibrated to experimental data, they do not explicitly represent the spatial and stochastic features of a biological system, limiting their insights and applications. However, spatial models describing biological systems with spatial information are mathematically complex and computationally expensive, which limits the ability to calibrate and deploy them and highlights the need for simpler methods able to model the spatial features of biological systems.

    Results

    In this work, we develop a formal method for deriving cell-based, spatial, multicellular models from ODE models of population dynamics in biological systems, and vice versa. We provide examples of generating spatiotemporal, multicellular models from ODE models of viral infection and immune response. In these models, the determinants of agreement of spatial and non-spatial models are the degree of spatial heterogeneity in viral production and rates ofmore »extracellular viral diffusion and decay. We show how ODE model parameters can implicitly represent spatial parameters, and cell-based spatial models can generate uncertain predictions through sensitivity to stochastic cellular events, which is not a feature of ODE models. Using our method, we can test ODE models in a multicellular, spatial context and translate information to and from non-spatial and spatial models, which help to employ spatiotemporal multicellular models using calibrated ODE model parameters. We additionally investigate objects and processes implicitly represented by ODE model terms and parameters and improve the reproducibility of spatial, stochastic models.

    Conclusion

    We developed and demonstrate a method for generating spatiotemporal, multicellular models from non-spatial population dynamics models of multicellular systems. We envision employing our method to generate new ODE model terms from spatiotemporal and multicellular models, recast popular ODE models on a cellular basis, and generate better models for critical applications where spatial and stochastic features affect outcomes.

    « less
  3. Abstract

    Rural areas are increasingly subject to the effects of telecouplings (socioeconomic and environmental interactions over distances) whereby their human and natural dynamics are linked to socioeconomic and environmental drivers operating far away, such as the growing demand for labor and ecosystem services in cities. Although there have been many studies evaluating the effects of telecouplings, telecouplings in those studies were often investigated separately, and how telecouplings may interact and affect dynamics of rural coupled human and natural systems (CHANS) jointly was rarely evaluated. In this study, we developed an agent-based model and simulated the impacts of two globally common telecouplings, nature-based tourism and labor migration, on forest dynamics of a rural CHANS, China’s Wolong Nature Reserve (Wolong). Nature-based tourism and labor migration can facilitate forest recovery, and the predicted forest areas in Wolong in 2030 would be reduced by 26.2 km2(6.8%) and 23.9 km2(6.2%), respectively, without their effects. However, tourism development can significantly reduce the probability of local households to have member(s) outmigrate to work in cities and decrease the positive impact of labor migration on forest recovery. Our simulations show that the interaction between tourism and labor migration can reduce the potential forest recovery by 3.5 km2(5.0%) inmore »2030. Our study highlights that interactions among different telecouplings can generate significant impacts on socioeconomic and environmental outcomes and should be jointly considered in the design, management, and evaluation of telecouplings for achieving sustainable development goals.

    Significance Statement

    Rural areas are increasingly connected with other places through telecouplings, such as tourism and labor migration. However, telecouplings’ effects were often evaluated separately, and their interaction remains poorly understood. In this study, we evaluated how two globally common telecouplings, tourism and labor migration, jointly affect forest dynamics in a demonstration site using an agent-based modeling approach. Although both tourism and labor migration can benefit forest conservation, we found that their interaction generates an antagonistic effect: households’ involvement in tourism activities reduces their probability to have members outmigrate to work in cities and significantly diminishes the beneficial impact of labor migration on forest recovery. Our study highlights the importance of considering interaction among telecouplings in the management of telecouplings for sustainability.

    « less
  4. ABSTRACT

    We present a study of molecular structures (clumps and clouds) in the dwarf galaxy NGC 404 using high-resolution (≈0.86 × 0.51 pc2) Atacama Large Millimeter/sub-millimeter Array 12CO(2-1) observations. We find two distinct regions in NGC 404: a gravitationally stable central region (Toomre parameter Q = 3–30) and a gravitationally unstable molecular ring (Q ≲ 1). The molecular structures in the central region have a steeper size–linewidth relation and larger virial parameters than those in the molecular ring, suggesting gas is more turbulent in the former. In the molecular ring, clumps exhibit a shallower mass–size relation and larger virial parameters than clouds, implying density structures and dynamics are regulated by different physical mechanisms at different spatial scales. We construct an analytical model of clump–clump collisions to explain the results in the molecular ring. We propose that clump–clump collisions are driven by gravitational instabilities coupled with galactic shear, which lead to a population of clumps whose accumulation lengths (i.e. average separations) are approximately equal to their tidal radii. Our model-predicted clump masses and sizes (and mass–size relation) and turbulence energy injection rates (and size–linewidth relation) match the observations in the molecular ring very well, suggesting clump–clump collisions are the main mechanism regulating clump properties and gas turbulencemore »in that region. As expected, our collision model does not apply to the central region, where turbulence is likely driven by clump migration.

    « less
  5. Abstract

    The spatial distribution of population affects disease transmission, especially when shelter in place orders restrict mobility for a large fraction of the population. The spatial network structure of settlements therefore imposes a fundamental constraint on the spatial distribution of the population through which a communicable disease can spread. In this analysis we use the spatial network structure of lighted development as a proxy for the distribution of ambient population to compare the spatiotemporal evolution of COVID-19 confirmed cases in the USA and China. The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band sensor on the NASA/NOAA Suomi satellite has been imaging night light at ~ 700 m resolution globally since 2012. Comparisons with sub-kilometer resolution census observations in different countries across different levels of development indicate that night light luminance scales with population density over ~ 3 orders of magnitude. However, VIIRS’ constant ~ 700 m resolution can provide a more detailed representation of population distribution in peri-urban and rural areas where aggregated census blocks lack comparable spatial detail. By varying the low luminance threshold of VIIRS-derived night light, we depict spatial networks of lighted development of varying degrees of connectivity within which populations are distributed. The resulting size distributions of spatial network componentsmore »(connected clusters of nodes) vary with degree of connectivity, but maintain consistent scaling over a wide range (5 × to 10 × in area & number) of network sizes. At continental scales, spatial network rank-size distributions obtained from VIIRS night light brightness are well-described by power laws with exponents near −2 (slopes near −1) for a wide range of low luminance thresholds. The largest components (104to 105km2) represent spatially contiguous agglomerations of urban, suburban and periurban development, while the smallest components represent isolated rural settlements. Projecting county and city-level numbers of confirmed cases of COVID-19 for the USA and China (respectively) onto the corresponding spatial networks of lighted development allows the spatiotemporal evolution of the epidemic (infection and detection) to be quantified as propagation within networks of varying connectivity. Results for China show rapid nucleation and diffusion in January 2020 followed by rapid decreases in new cases in February. While most of the largest cities in China showed new confirmed cases approaching zero before the end of February, most of these cities also showed distinct second waves of cases in March or April. Whereas new cases in Wuhan did not approach zero until mid-March, as of December 2020 it has not yet experienced a second wave of cases. In contrast, the results for the USA show a wide range of trajectories, with an abrupt transition from slow increases in confirmed cases in a small number of network components in January and February, to rapid geographic dispersion to a larger number of components shortly before mobility reductions occurred in March. Results indicate that while most of the upper tail of the network had been exposed by the end of March, the lower tail of the component size distribution has only shown steep increases since mid-June.

    « less