skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The evolution of curvature in planar, photoionization-driven heat fronts
Photoionized plasmas are common in astrophysics and cosmology, especially in space near compact objects, and there are effects from photoionization in high-energy-density plasmas due to the large radiation fields present. Photoionized plasmas are an active area of laboratory research and there are currently experiments to study photoionization-supported heat fronts. These photoionization fronts differ from the physics of diffusive radiation waves, commonly called Marshak waves, that are also an active area of research. This work uses a geometric argument to describe the expected evolution of the photoionization front curvature, in a planar geometry. It then compares this curvature to that of a Marshak wave as a method of diagnosing a heat front experiment. It is found that while the curvature of a planar Marshak wave increases in time, it decreases for a photoionization front. A comparison of radiation energy and electron heat fluxes through the container for the heat front propagating medium demonstrates that the geometric argument for the photoionization front curvature is sufficient. This comparison also demonstrates that wall losses are not significant in a photoionization front because the post-front region is very optically thin. A discussion of the implication this work has on material choice in the targets for an experiment follows.  more » « less
Award ID(s):
2138109
PAR ID:
10381065
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physics of Plasmas
Volume:
29
Issue:
8
ISSN:
1070-664X
Page Range / eLocation ID:
084501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Radiation and breaking of internal lee waves are thought to play a significant role in the energy and heat budget of the Southern Ocean. Open questions remain, however, regarding the amount of energy converted from the deep flows of the Antarctic Circumpolar Current (ACC) into lee waves and how much of this energy dissipates locally. This study estimated the linear lee‐wave energy radiation using a unique 4‐year time series of stratification and near‐bottom currents from an array of Current and Pressure measuring Inverted Echo Sounders (CPIES) spanning Drake Passage. Lee‐wave energy was calculated from two 2D anisotropic and one 1D isotropic abyssal hill topographies. Lee‐wave energy radiation from all three topographies was largest in the Polar Front Zone associated with strong deep meandering of the ACC fronts. Both baroclinic and barotropic instabilities appeared to modulate the conversion to lee waves in the Polar Front Zone. Fine structure temperature, salinity, and velocity profiles at the CPIES locations were used to estimate turbulent dissipation due to breaking internal waves by employing a finescale parameterization. High dissipation near the bottom was consistent with upward‐propagating, high‐frequency lee waves as found by earlier studies. In contrast to idealized numerical predictions of 50% local dissipation of lee‐wave energy, this study found less than 10% dissipated locally similar to some other studies. Improving the representation of the abyssal hills by accounting for anisotropy did not reduce the discrepancy between radiated lee‐wave energy and local dissipation. Instead, alternative fates must be considered for the excess radiated lee‐wave energy. 
    more » « less
  2. Atmospheric fronts embedded in extratropical cyclones are high‐impact weather phenomena, contributing significantly to mid‐latitude winter precipitation. The three vital characteristics of the atmospheric fronts, high wind speeds, abrupt change in wind direction, and rapid translation, force the induced surface waves to be misaligned with winds exclusively behind the cold fronts. The effects of the misaligned waves under atmospheric cold fronts on air‐sea fluxes remain undocumented. Using the multi‐year in situ near‐surface observations and direct covariance flux measurements from the Pioneer Array off the coast of New England, we find that the majority of the passing cold fronts generate misaligned waves behind the cold front. Once generated, the waves remain misaligned, on average, for about 8 hr. The parameterized effect of misaligned waves in a fully coupled model significantly increases the roughness length (185%), drag coefficient (19%), and air‐sea momentum flux (11%). The increased surface drag reduces the wind speeds in the surface layer. The upward turbulent heat flux is weakly decreased by the misaligned waves because of the decrease in temperature and humidity scaling parameters being greater than the increase in friction velocity. The misaligned wave effect is not accurately represented in a commonly used wave‐based bulk flux algorithm. Yet, considering this effect in the current formulation improves the overall accuracy of parameterized momentum flux estimates. The results imply that better representing a directional wind‐wave coupling in the bulk formula of the numerical models may help improve the air‐sea interaction simulations under the passing atmospheric fronts in the mid‐latitudes. 
    more » « less
  3. Abstract Heat waves have pronounced impacts on human health, ecosystems, and society. Heat waves have become more frequent and intense globally and are likely to intensify further in a warming climate. Across the United States there is a warming trend in average surface temperatures, but concordant increase in heat wave severity appears absent. Limitations in heat waves studies may be responsible for limited detection of a heat wave warming signal. We track daily spatiotemporal evolution of heat waves using geometric concepts and clustering algorithms to investigate how heat manifests on the land surface. We develop a spatial metric combining heat wave frequency, magnitude, duration, and areal extent. We find mixed trends in some individual heat wave characteristics across the United States during 1981–2018. However, exploration of the spatiotemporal evolution of combined heat wave characteristics shows considerable increases during this period and indicates a substantial increase in heat wave hazard across the United States. 
    more » « less
  4. Fromme, Paul; Su, Zhongqing (Ed.)
    We investigate curved surfaces operating as geodesic lenses for elastic waves. Consistently with findings in optics, we show that wave propagation occurs along rays that correspond to the geodesics of the curved surfaces, and we establish the geometric equivalence between Gaussian curvature and refractive index. This equivalence is formulated for flexural waves in curved shells by showing that, in the short wavelength limit, the ray equation corresponds to the classical equation of geodesics. We leverage this result to identify a non-Euclidean transformation that maps the geometric profile of a isotropic curved waveguide into a spatially varying refractive index distribution for a planar waveguide. These theoretical predictions are validated first through numerical simulations, and subsequently through experiments on 3D printed curved membranes with different curvature distributions. Numerical and experimental findings confirm that focal regions and caustic networks are correctly predicted based on geodesic evaluations. Our results form the basis for the design of curved profiles that correspond to spatial distributions of the refractive index and induce focal points by forcing waves to propagate along predefined trajectories. The findings of this study also suggest curvature as an attractive alternative to strategies based on the local tailoring of material properties and geometrical patterns that have gained in popularity for gradient-index lens design. 
    more » « less
  5. Oceanic motions across meso‐, submeso‐, and turbulent scales play distinct roles in vertical heat transport (VHT) between the ocean's surface and its interior. While it is commonly understood that during summertime the enhanced stratification due to increased solar radiation typically results in an reduced upper‐ocean vertical exchange, our study reveals a significant upward VHT associated with submesoscale fronts (<30 km) through high‐resolution observations in the eddy‐active South China Sea. The observation‐based VHT reaches ∼100 W m−2and extends to ∼150 m deep at the fronts between eddies. Combined with microstructure observations, this study demonstrates that mixing process can only partly offset the strong upward VHT by inducing a downward heat flux of 0.5–10 W m−2. Thus, the submesoscale‐associated VHT is effectively heating the subsurface layer. These findings offer a quantitative perspective on the scale‐dependent nature of VHT, with crucial implications for the climate system. 
    more » « less