The family of lysine acetyltransferases (KATs) regulates epigenetics and signaling pathways in eukaryotic cells. So far, knowledge of different KAT members contributing to the cellular acetylome is limited, which limits our understanding of biological functions of KATs in physiology and disease. Here, we found that a clickable acyl-CoA reporter, 3-azidopropanoyl CoA (3AZ-CoA), presented remarkable cell permeability and effectively acylated proteins in cells. We rationally engineered the major KAT member, histone acetyltransferase 1 (HAT1), to generate its mutant forms that displayed excellent bio-orthogonal activity for 3AZ-CoA in substrate labeling. We were able to apply the bio-orthogonal enzyme–cofactor pair combined with SILAC proteomics to achieve HAT1 substrate targeting, enrichment, and proteomic profiling in living cells. A total of 123 protein substrates of HAT1 were disclosed, underlining the multifactorial functions of this important enzyme than hitherto known. This study demonstrates the first example of utilizing bio-orthogonal reporters as a chemoproteomic strategy for substrate mapping of individual KAT isoforms in the native biological contexts. 
                        more » 
                        « less   
                    
                            
                            Identification and Profiling of Histone Acetyltransferase Substrates by Bioorthogonal Labeling
                        
                    
    
            Abstract Histone acetyltransferases (HATs, also known as lysine acetyltransferases, KATs) catalyze acetylation of their cognate protein substrates using acetyl‐CoA (Ac‐CoA) as a cofactor and are involved in various physiological and pathological processes. Advances in mass spectrometry‐based proteomics have allowed the discovery of thousands of acetylated proteins and the specific acetylated lysine sites. However, due to the rapid dynamics and functional redundancy of HAT activities, and the limitation of using antibodies to capture acetylated lysines, it is challenging to systematically and precisely define both the substrates and sites directly acetylated by a given HAT. Here, we describe a chemoproteomic approach to identify and profile protein substrates of individual HAT enzymes on the proteomic scale. The approach involves protein engineering to enlarge the Ac‐CoA binding pocket of the HAT of interest, such that a mutant form is generated that can use functionalized acyl‐CoAs as a cofactor surrogate to bioorthogonally label its protein substrates. The acylated protein substrates can then be chemoselectively conjugated either with a fluorescent probe (for imaging detection) or with a biotin handle (for streptavidin pulldown and chemoproteomic identification). This modular chemical biology approach has been successfully implemented to identify protein substrates of p300, GCN5, and HAT1, and it is expected that this method can be applied to profile and identify the sub‐acetylomes of many other HAT enzymes. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Labeling HAT protein substrates with azide/alkyne‐biotin Alternate Protocol: Labeling protein substrates of HATs with azide/alkyne‐TAMRA for in‐gel visualization Support Protocol 1: Expression and purification of HAT mutants Support Protocol 2: Synthesis of Ac‐CoA surrogates Basic Protocol 2: Streptavidin enrichment of biotinylated HAT substrates Basic Protocol 3: Chemoproteomic identification of HAT substrates Basic Protocol 4: Validation of specific HAT substrates with western blotting 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1808087
- PAR ID:
- 10381136
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Current Protocols
- Volume:
- 2
- Issue:
- 7
- ISSN:
- 2691-1299
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)As potential high surface area for selective capture in diagnostic or filtration devices, biotin-cellulose nanofiber membranes were fabricated to demonstrate the potential for specific and bio-orthogonal attachment of biomolecules onto nanofiber surfaces. Cellulose acetate was electrospun and substituted with alkyne groups in either a one- or two-step process. The alkyne reaction, confirmed by FTIR and Raman spectroscopy, was dependent on solvent ratio, time, and temperature. The two-step process maximized alkyne substitution in 10/90 volume per volume ratio (v/v) water to isopropanol at 50 °C after 6 h compared to the one-step process in 80/20 (v/v) at 50 °C after 48 h. Azide-biotin conjugate “clicked” with the alkyne-cellulose via copper-catalyzed alkyne-azide cycloaddition (CuAAC). The biotin-cellulose membranes, characterized by FTIR, SEM, Energy Dispersive X-ray spectroscopy (EDX), and XPS, were used in proof-of-concept assays (HABA (4′-hydroxyazobenzene-2-carboxylic acid) colorimetric assay and fluorescently tagged streptavidin assay) where streptavidin selectively bound to the pendant biotin. The click reaction was specific to alkyne-azide coupling and dependent on pH, ratio of ascorbic acid to copper sulfate, and time. Copper (II) reduction to copper (I) was successful without ascorbic acid, increasing the viability of the click conjugation with biomolecules. The surface-available biotin was dependent on storage medium and time: Decreasing with immersion in water and increasing with storage in air.more » « less
- 
            Abstract Alkyne tags have been widely used for the enrichment of labeled proteins to enable their profiling at a proteome‐wide scale by mass spectrometry. The key component in the enrichment process is an azido‐terminated cleavable linker for capturing the labeled proteins/peptides via click reaction. Herein, we report a new efficient click linker (APAbiotin) featuring an acid‐cleavable acetal linkage end‐caped with a highly reactive picolyl azido head and a biotin handle for anchoring onto streptavidin‐coated supports. Using an amine‐reactive probe to profile the proteome structural changes in livingS. cerevisiaecells within 5 minutes of heat shock, we demonstrated that the linker allowed identification of >9400 labeled sites, among which 457–1656 with significantly altered reactivity upon heat shock. This study represented the first chemical labeling mass spectrometry (CL–MS)‐based profiling of proteome structural changes in living cells in response to external stimuli. Data are available via ProteomeXchange with identifier PXD051279.more » « less
- 
            Abstract Protein acetylation and acylation are widespread post‐translational modifications (PTMs) in eukaryotic and prokaryotic organisms. Histone acetyltransferase (HATs) enzymes catalyze the addition of short‐chain acyl moieties to lysine residues on cellular proteins. Many HAT members are found to be dysregulated in human diseases, especially oncological processes. Screening potent and selective HAT inhibitors has promising application for therapeutic innovation. A biochemical assay for quantification of HAT activity utilizing luminescent output is highly desirable to improve upon limitations associated with the classic radiometric assay formats. Here we report the design of a bioluminescent technological platform for robust and sensitive quantification of HAT activity. This platform utilizes the metabolic enzyme acetyl‐CoA synthetase 1 (ACS1) for a coupled reaction with firefly luciferase to generate luminescent signal relative to the HAT‐catalyzed acetylation reaction. The biochemical assay was implemented in microtiter plate format and our results showed this assay sensitively detected catalytic activity of HAT enzyme p300, accurately measured its steady‐state kinetic parameters of histone acetylation and measured the inhibitory potency of HAT inhibitor. This platform demonstrated excellent robustness, reproducibility, and signal‐to‐background ratios, with a screening window Z’=0.79. Our new bioluminescent design provides an alternative means for HAT enzymatic activity quantitation and HAT inhibitor screening.more » « less
- 
            null (Ed.)Abstract Short-chain acylations of lysine residues in eukaryotic proteins are recognized as essential posttranslational chemical modifications (PTMs) that regulate cellular processes from transcription, cell cycle, metabolism, to signal transduction. Lysine butyrylation was initially discovered as a normal straight chain butyrylation (Knbu). Here we report its structural isomer, branched chain butyrylation, i.e. lysine isobutyrylation (Kibu), existing as a new PTM on nuclear histones. Uniquely, isobutyryl-CoA is derived from valine catabolism and branched chain fatty acid oxidation which is distinct from the metabolism of n-butyryl-CoA. Several histone acetyltransferases were found to possess lysine isobutyryltransferase activity in vitro, especially p300 and HAT1. Transfection and western blot experiments showed that p300 regulated histone isobutyrylation levels in the cell. We resolved the X-ray crystal structures of HAT1 in complex with isobutyryl-CoA that gleaned an atomic level insight into HAT-catalyzed isobutyrylation. RNA-Seq profiling revealed that isobutyrate greatly affected the expression of genes associated with many pivotal biological pathways. Together, our findings identify Kibu as a novel chemical modification mark in histones and suggest its extensive role in regulating epigenetics and cellular physiology.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
