skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From manganese oxidation to water oxidation: assembly and evolution of the water-splitting complex in photosystem II
Award ID(s):
1716408
PAR ID:
10381171
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Photosynthesis Research
Volume:
152
Issue:
2
ISSN:
0166-8595
Page Range / eLocation ID:
107 to 133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Metal-free electrocatalysts represent a main branch of active materials for oxygen evolution reaction (OER), but they excessively rely on functionalized conjugated carbon materials, which substantially restricts the screening of potential efficient carbonaceous electrocatalysts. Herein, we demonstrate that a mesostructured polyacrylate hydrogel can afford an unexpected and exceptional OER activity – on par with that of benchmark IrO 2 catalyst in alkaline electrolyte, together with a high durability and good adaptability in various pH environments. Combined theoretical and electrokinetic studies reveal that the positively charged carbon atoms within the carboxylate units are intrinsically active toward OER, and spectroscopic operando characterizations also identify the fingerprint superoxide intermediate generated on the polymeric hydrogel backbone. This work expands the scope of metal-free materials for OER by providing a new class of polymeric hydrogel electrocatalysts with huge extension potentials. 
    more » « less
  2. Gerard Parking (Ed.)
    The oxygen evolution reaction (OER) of water splitting is essential to electrochemical energy storage applications. While nickel electrodes are widely available heterogeneous OER catalysts, homogeneous nickel catalysts for OER are underexplored. Here we report two carbene-ligated nickel(II) complexes that are exceptionally robust and efficient homogeneous water oxidation catalysts. Remarkably, these novel nickel complexes can assemble a stable thin film onto a metal electrode through poly-imidazole bridges, making them supported heterogeneous electrochemical catalysts that are resilient to leaching and stripping. Unlike molecular catalysts and nanoparticle catalysts, such electrode-supported metal-complex catalysts for OER are rare and have the potential to inspire new designs. The electrochemical OER with our nickel-carbene catalysts exhibits excellent current densities with high efficiency, low Tafel slope, and useful longevity for a base metal catalyst. Our data show that imidazole carbene ligands stay bonded to the nickel(II) centers throughout the catalysis, which allows the facile oxygen evolution. 
    more » « less
  3. Abstract Electrochemical water oxidation reaction (WOR) to hydrogen peroxide (H 2 O 2 ) via a 2e − pathway provides a sustainable H 2 O 2 synthetic route, but is challenged by the traditional 4e − counterpart of oxygen evolution. Here we report a CO 2 /carbonate mediation approach to steering the WOR pathway from 4e − to 2e − . Using fluorine-doped tin oxide electrode in carbonate solutions, we achieved high H 2 O 2 selectivity of up to 87%, and delivered unprecedented H 2 O 2 partial currents of up to 1.3 A cm −2 , which represents orders of magnitude improvement compared to literature. Molecular dynamics simulations, coupled with electron paramagnetic resonance and isotope labeling experiments, suggested that carbonate mediates the WOR pathway to H 2 O 2 through the formation of carbonate radical and percarbonate intermediates. The high selectivity, industrial-relevant activity, and good durability open up practical opportunities for delocalized H 2 O 2 production. 
    more » « less