skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Earthquake Hazard Uncertainties Improved Using Precariously Balanced Rocks
Abstract

Probabilistic seismic hazard analysis (PSHA) is the state‐of‐the‐art method to estimate ground motions exceeded by large, infrequent, and potentially damaging earthquakes; however, a fundamental problem is the lack of an accepted method for both quantitatively validating and refining the hazard estimates using empirical geological data. In this study, to reduce uncertainties in such hazard estimates, we present a new method that uses empirical data from precariously balanced rocks (PBRs) in coastal Central California. We calculate the probability of toppling of each PBR at defined ground‐motion levels and determine the age at which the PBRs obtained their current fragile geometries using a novel implementation of cosmogenic10Be exposure dating. By eliminating the PSHA estimates inconsistent with at least a 5% probability of PBR survival, the mean ground‐motion estimate corresponding to the hazard level of 10−4 yr−1(10,000 yr mean return period) is significantly reduced by 27%, and the range of estimated 5th–95th fractile ground motions is reduced by 49%. Such significant reductions in uncertainties make it possible to more reliably assess the safety and security of critical infrastructure in earthquake‐prone regions worldwide.

 
more » « less
PAR ID:
10381177
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Volume:
1
Issue:
4
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Performance-based procedures represent an improvement over current state-of-practice procedures that treat the assessment of seismic demand and engineering response parameters independently. Procedures used in current practice generally provide estimates of liquefaction-induced ground settlement that are inconsistent with the desired ground settlement hazard level. A recently developed probabilistic procedure to estimate liquefaction-induced ground settlement is employed to develop a new performance-based procedure that estimates ground settlement which accounts for key sources of uncertainty. The ground-motion intensity and ground settlement estimations are integrated in the proposed procedure to produce hazard curves for liquefaction-induced ground settlement. The hazard curve for ground settlement links different hazard levels with their corresponding values of ground settlement by evaluating a wide range of ground-motion intensities and site characterization parameters with their associated uncertainties. The proposed performance-based procedure also permits the evaluation of different sources of uncertainty and their effects on the ground settlement estimate.

     
    more » « less
  2. Abstract

    Infrared observations of stellar orbits about Sgr A* probe the mass distribution in the inner parsec of the Galaxy and provide definitive evidence for the existence of a massive black hole. However, the infrared astrometry is relative and is tied to the radio emission from Sgr A* using stellar SiO masers that coincide with infrared-bright stars. To support and improve this two-step astrometry, we present new astrometric observations of 15 stellar SiO masers within 2 pc of Sgr A*. Combined with legacy observations spanning 25.8 yr, we reanalyze the relative offsets of these masers from Sgr A* and measure positions and proper motions that are significantly improved compared to the previously published reference frame. Maser positions are corrected for epoch-specific differential aberration, precession, nutation, and solar gravitational deflection. Omitting the supergiant IRS 7, the mean position uncertainties are 0.46 mas and 0.84 mas in R.A. and decl., and the mean proper motion uncertainties are 0.07 mas yr−1and 0.12 mas yr−1, respectively. At a distance of 8.2 kpc, these correspond to position uncertainties of 3.7 and 6.9 au and proper motion uncertainties of 2.7 and 4.6 km s−1. The reference frame stability, the uncertainty in the variance-weighted mean proper motion of the maser ensemble, is 8μas yr−1(0.30 km s−1) in R.A. and 11μas yr−1(0.44 km s−1) in decl., which represents a 2.3-fold improvement over previous work and a new benchmark for the maser-based reference frame.

     
    more » « less
  3. The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard (both increases and decreases compared to previous NSHMs) are substantial because the new model considers more data and updated earthquake rupture forecasts and ground-motion components. In developing the 2023 model, we tried to apply best available or applicable science based on advice of co-authors, more than 50 reviewers, and hundreds of hazard scientists and end-users, who attended public workshops and provided technical inputs. The hazard assessment incorporates new catalogs, declustering algorithms, gridded seismicity models, magnitude-scaling equations, fault-based structural and deformation models, multi-fault earthquake rupture forecast models, semi-empirical and simulation-based ground-motion models, and site amplification models conditioned on shear-wave velocities of the upper 30 m of soil and deeper sedimentary basin structures. Seismic hazard calculations yield hazard curves at hundreds of thousands of sites, ground-motion maps, uniform-hazard response spectra, and disaggregations developed for pseudo-spectral accelerations at 21 oscillator periods and two peak parameters, Modified Mercalli Intensity, and 8 site classes required by building codes and other public policy applications. Tests show the new model is consistent with past ShakeMap intensity observations. Sensitivity and uncertainty assessments ensure resulting ground motions are compatible with known hazard information and highlight the range and causes of variability in ground motions. We produce several impact products including building seismic design criteria, intensity maps, planning scenarios, and engineering risk assessments showing the potential physical and social impacts. These applications provide a basis for assessing, planning, and mitigating the effects of future earthquakes.

     
    more » « less
  4. Abstract

    Nonlinear response history analysis (NLRHA) is generally considered to be a reliable and robust method to assess the seismic performance of buildings under strong ground motions. While NLRHA is fairly straightforward to evaluate individual structures for a select set of ground motions at a specific building site, it becomes less practical for performing large numbers of analyses to evaluate either (1) multiple models of alternative design realizations with a site‐specific set of ground motions, or (2) individual archetype building models at multiple sites with multiple sets of ground motions. In this regard, surrogate models offer an alternative to running repeated NLRHAs for variable design realizations or ground motions. In this paper, a recently developed surrogate modeling technique, called probabilistic learning on manifolds (PLoM), is presented to estimate structural seismic response. Essentially, the PLoM method provides an efficient stochastic model to develop mappings between random variables, which can then be used to efficiently estimate the structural responses for systems with variations in design/modeling parameters or ground motion characteristics. The PLoM algorithm is introduced and then used in two case studies of 12‐story buildings for estimating probability distributions of structural responses. The first example focuses on the mapping between variable design parameters of a multidegree‐of‐freedom analysis model and its peak story drift and acceleration responses. The second example applies the PLoM technique to estimate structural responses for variations in site‐specific ground motion characteristics. In both examples, training data sets are generated for orthogonal input parameter grids, and test data sets are developed for input parameters with prescribed statistical distributions. Validation studies are performed to examine the accuracy and efficiency of the PLoM models. Overall, both examples show good agreement between the PLoM model estimates and verification data sets. Moreover, in contrast to other common surrogate modeling techniques, the PLoM model is able to preserve correlation structure between peak responses. Parametric studies are conducted to understand the influence of different PLoM tuning parameters on its prediction accuracy.

     
    more » « less
  5. Abstract

    Understanding and modeling variability of ground motion is essential for building accurate and precise ground motion prediction equations, which can net site‐specific characterization and reduced hazard levels. Here, we explore the spatial variability in peak ground velocity (PGV) at Sage Brush Flats along the San Jacinto Fault in Southern California. We use data from a dense array (0.6 × 0.6 km2, 1,108 geophones, station spacings 10–30 m) deployed in 2014 for ~1 month. These data offer an opportunity to study small‐scale variability in this region. We examine 38 earthquakes (2 ≤ ML ≤ 4.2) within 200 km of the array. Fault strands and a small basin impact the ground motions, producing PGV variations up to 22% of the mean and a 40% reduction inPandSwave near‐surface velocities. We find along‐fault rupture directivity, source, and path effects can increase PGVs by 167%. Surface PGV measurements exceed the colocated borehole station (depth at 148 m) PGV by factors of 3–10, confirming the impact on PGV from near‐surface fault structures, basins, topography, and amplifications from soft sediments. Consistently, we find high PGVs within the basin structure. A pair of colocated GaML2.6 events produce repeatable PGV values with similar spatial patterns. The average corner frequencies of these two events are 11–16 Hz, and viable measurements of stress drop can differ by 6.45 MPa. Within this small array, the PGV values are variable implying spatial extrapolation of PGV to regions of known faults and basins, even across a small area, should be done with caution.

     
    more » « less