skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rainbow to Grow: How Different Colors of light Influence Plant Growth
This article describes a six-day 5E lesson where students take on the role of horticulturists to help their mentor, Dr. Doust, in identifying the best growing conditions for a new species of plant from the Amazonian Rainforest (see Slide 1 from the Engage Teacher PowerPoint; see also Supplemental Materials). Students explore the different wavelengths of visible light and seek an answer to aspects of the lesson’s driving question, “How can different light colors affect plant growth?” The activities in this lesson provide students with the skill set to construct scientific explanations based on evidence for how environmental factors influence the growth of plants. Additional detail about managing each of the activities described in the manuscript is provided in the Supplemental Materials and include PowerPoint presentations, teacher handouts, rubrics, and student handouts for each phase of the lesson.  more » « less
Award ID(s):
1725714
PAR ID:
10381182
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Science scope
Volume:
45
Issue:
6
ISSN:
0887-2376
Page Range / eLocation ID:
16-23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The way high school chemistry curricula are structured has the potential to convey consequential messages about knowledge and knowing to students and teachers. If a curriculum is built around practicing skills and recalling facts to reach “correct” answers, it is unlikely class activities will be seen (by students or the teacher) as opportunities to figure out causes for phenomena. Our team of teachers and researchers is working to understand how enactment of transformed curricular materials can support high school chemistry students in making sense of perplexing, relatable phenomena. Given this goal, we were surprised to see that co-developers who enacted our materials overwhelmingly emphasized the importance of acquiring true facts/skills when writing weekly reflections. Recognition that teachers’ expressed aims did not align with our stated goal of “supporting molecular-level sensemaking” led us to examine whether the tacit epistemological commitments reflected by our materials were, in fact, consistent with a course focused on figuring out phenomena. We described several aspects of each lesson in our two-semester curriculum including: the role of phenomena in lesson activities, the extent to which lessons were 3-dimensional, the role of student ideas in class dialogue, and who established coherence between lessons. Triangulation of these lesson features enabled us to infer messages about valued knowledge products and processes materials had the potential to send. We observed that our materials commonly encouraged students to mimic the structure of science practices for the purpose of being evaluated by the teacher. That is, students were asked to “go through the motions” of explaining, modeling etc. but had little agency regarding the sorts of models and explanations they found productive in their class community. This study serves to illustrate the importance of surfacing the tacit epistemological commitments that guide curriculum development. Additionally, it extends existing scholarship on epistemological messaging by considering curricular materials as a potentially consequential sources of messages. 
    more » « less
  2. This investigation is the first of four investigations funded by the NSF (DUE award 2215807) to develop and then field test on open educational browser-based writing-to-learn tool called GIKS. The underlying theory is that writing-to-learn with immediate formative feedback presented as concept networks is engaging and effective for learning concepts covered in lectures. This work was studied in a second year architectural engineering course focusing on building materials, processes and modeling. Participants (n=84) completed a lesson (readings, lecture, and labs) then followed by writing prompts centered on the following topics: Building with Concrete and Wood Construction (3 weeks later). Participants were assigned to one of two counterbalanced groups, group A used GIKS software to write a 300-word summary of the first lesson but did not write in the second lesson, while group B did not write in the first lesson but used GIKS in the second lesson, so that each group served as a control treatment for the other group. All students completed a concept structure survey at the end of each lesson that contained 20 key concepts from that lesson, the two concept structure surveys’ data were transformed into concept networks and then these networks were compared to an expert network benchmark referent, as well as to networks of the textbook chapter and the PowerPoint slides of the related lesson. Then a week after the second lesson students completed the standing end-of-module multiple-choice posttest that included items from these lesson as well as from other lessons in the module. Results to date highlight that for both lessons, the group using GIKS scored higher on the concept structure survey (more like the expert network) BUT lower on the multiple-choice test, the difference was significant for the Building with Concrete lesson (p < .05) but not for the Wood Construction lesson. This interaction has been reported before by Ntshalintshali & Clariana (2020), that improving conceptual knowledge sometimes decreases memory of lesson details. Descriptive analysis of the group-average networks derived from the concept structure surveys for Building with Concrete show that the group-averaged network of those using GIKS compared to the control was more like the expert network (54% vs. 36%), the network of the textbook Chapter (32% vs. 29%), the network of the PowerPoint (PP) (46% vs. 41%), and especially like peers in the other group (67%). For Wood Construction the difference between the groups was less, the group-averaged network of those using GIKS compared to the control was more like the expert (40% vs. 39%), like the light-framed construction PP (28% vs. 24%), and especially like peers in the other group (72%). These findings show that writing-to-learn with GIKS with immediate network feedback improves conceptual knowledge as expected but at the cost of details. Peers conceptual structure of the lesson materials were very similar (peer-peer mental model convergence) and were more like others than like the expert, or the book chapters, or the PowerPoint slides; in addition, the PowerPoint slides appear to influence conceptual structure more than the textbook chapters. Investigation 2 will consider writing-to-learn with or without immediate network feedback in order to isolate the effects of immediate network feedback. 
    more » « less
  3. This article outlines the key components of the River’s Edge Construction lesson plan. An explanation of how the lesson was delivered is presented alongside suggestions for implementation by K–6 teachers. The integration of scientific literacy is discussed first, followed by a discussion of each of the 5Es (Bybee et al. 2006). A timeframe for distributing the lesson phases is given; however, the activities included in this plan (see Supplementary Resources for specific lesson materials), should be modified to meet the needs and interest of students, and to align with allotted instructional time and objectives. 
    more » « less
  4. This article outlines the key components of the River’s Edge Construction lesson plan. An explanation of how the lesson was delivered is presented alongside suggestions for implementation by K–6 teachers. The integration of scientific literacy is discussed first, followed by a discussion of each of the 5Es (Bybee et al. 2006). A timeframe for distributing the lesson phases is given; however, the activities included in this plan (see Supplementary Resources for specific lesson materials), should be modified to meet the needs and interest of students, and to align with allotted instructional time and objectives. 
    more » « less
  5. In recent years, Wyoming has developed Computer Science (CS) standards for adoption and use within K-12 classrooms. These standards, adopted in January of 2022, go into effect for the 2022-2023 school year. The University of Wyoming has offered two different computer science week-long professional developments for teachers. Many K-12 teachers do not have a CS background, so developing CS lessons plans can be a challenge in these PDs.This research study is centered around three central questions: 1) To what extent did K-12 teachers integrate computing topics into their PD created lesson plans; 2) How do the teacher perceptions from the two CS PDs compare to each other; and 3) How was the CS PD translated to classroom activity? The first PD opportunity (n=14), was designed to give hands-on learning with CS topics focused on cybersecurity. The second PD opportunity (n=28), focused on integrating CS into existing curricula. At the end of each of these PDs, teacher K-12 teachers incorporated CS topics into their selected existing lesson plan(s). Additionally, a support network was implemented to support excellence in CS education throughout the state. This research study team evaluated the lesson plans developed during each PD event, by using a rubric on each lesson plan. Researchers collected exit surveys from the teachers. Implementation metrics were also gathered, including, how long each lesson lasted, how many students were involved in the implementation, what grades the student belonged to, the basic demographics of the students, the type of course the lesson plan was housed in, if the K-12 teacher reached their intended purpose, what evidence the K-12 teacher had of the success of their lesson plan, data summaries based on supplied evidence, how the K-12 teachers would change the lesson, the challenges and successes they experienced, and samples of student work. Quantitative analysis was basic descriptive statistics. Findings, based on evaluation of 40+ lessons, taught to over 1500 K-12 students, indicate that when assessed on a three point rubric of struggling, emerging, or excellent - certain components (e.g., organization, objectives, integration, activities & assessment, questions, and catch) of K-12 teacher created lessons plans varied drastically. In particular, lesson plan organization, integration, and questions each had a significant number of submissions which were evaluated as "struggling" [45%, 46%, 41%] through interesting integration, objectives, activities & assessment, and catch all saw submissions which were evaluated as "excellent" [43%, 48%, 43%, 48%]. The relationship between existing K-12 policies and expectations surfaces within these results and in combination with other findings leads to implications for the translation of current research practices into pre-collegiate PDs. 
    more » « less