skip to main content


Title: Geospace Concussion: Global Reversal of Ionospheric Vertical Plasma Drift in Response to a Sudden Commencement
Abstract

An interplanetary shock can abruptly compress the magnetosphere, excite magnetospheric waves and field‐aligned currents, and cause a ground magnetic response known as a sudden commencement (SC). However, the transient (<∼1 min) response of the ionosphere‐thermosphere system during an SC has been little studied due to limited temporal resolution in previous investigations. Here, we report observations of a global reversal of ionospheric vertical plasma motion during an SC on 24 October 2011 using ∼6 s resolution Super Dual Auroral Radar Network ground scatter data. The dayside ionosphere suddenly moved downward during the magnetospheric compression due to the SC, lasting for only ∼1 min before moving upward. By contrast, the post‐midnight ionosphere briefly moved upward then moved downward during the SC. Simulations with a coupled geospace model suggest that the reversedvertical drift is caused by a global reversal of ionospheric zonal electric field induced by magnetospheric compression during the SC.

 
more » « less
Award ID(s):
1934997 1935110
NSF-PAR ID:
10443991
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
19
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We provide evidence that midlatitude postsunrise traveling ionospheric disturbances (TIDs) are comprised of electrified waves with an eastward propagation component. The post‐sunrise gravity wave (GW) wind‐induced dynamo action effectively generated periodic meridional polarization electric fields (PEFs), facilitating TID zonal propagation in a similar fashion as GW‐driven neutral perturbations. A combination of near‐simultaneous eastward and upward observations using the Millstone Hill incoherent scatter radar along with 2‐dimensional total electron content maps allowed resolution of TID vertical and horizontal propagation as well as zonal ion drifts(meridional PEFs). In multiple observations,oscillated in the early morning during periods when TIDs exhibited downward phase progression, 30–60 min period,140 m/s eastward speed, and 70 km vertical wavelength. Inside these TIDs, multiple flow vortexes occurred in a vertical‐zonal plane spanning the ionospheric topside and bottomside. Subsequently, PEFs weakened after a few hours as TID horizontal wavefronts rotated clockwise.

     
    more » « less
  2. Abstract

    Energetic (≳50 keV) electron precipitation from the magnetosphere to the ionosphere during substorms can be important for magnetosphere‐ionosphere coupling. Using conjugate observations between the THEMIS, ELFIN, and DMSP spacecraft during a substorm, we have analyzed the energetic electron precipitation, the magnetospheric injection, and the associated plasma waves to examine the role of waves in pitch‐angle scattering plasma sheet electrons into the loss cone. During the substorm expansion phase, ELFIN‐A observed 50–300 keV electron precipitation from the plasma sheet that was likely driven by wave‐particle interactions. The identification of the low‐altitude extent of the plasma sheet from ELFIN is aided by DMSP global auroral images. Combining quasi‐linear theory, numerical test particle simulations, and equatorial THEMIS measurements of particles and fields, we have evaluated the relative importance of kinetic Alfvén waves (KAWs) and whistler‐mode waves in driving the observed precipitation. We find that the KAW‐driven bounce‐averaged pitch‐angle diffusion coefficientsnear the edge of the loss cone are ∼10−6–10−5s−1for these energetic electrons. Thedue to parallel whistler‐mode waves, observed at THEMIS ∼10‐min after the ELFIN observations, are ∼10−8–10−6s−1. Thus, at least in this case, the observed KAWs dominate over the observed whistler‐mode waves in the scattering and precipitation of energetic plasma sheet electrons during the substorm injection.

     
    more » « less
  3. Abstract

    A number of interdependent conditions and processes contribute to ionospheric‐origin energetic (10 eV to several keV) ion outflows. Due to these interdependences and the associated observational challenges, energetic ion outflows remain a poorly understood facet of atmosphere‐ionosphere‐magnetosphere coupling. Here we demonstrate the relationship between east‐west magnetic field fluctuations () and energetic outflows in the magnetosphere‐ionosphere transition region. We use dayside cusp region FAST satellite observations made near apogee (4,180‐km altitude) near fall equinox and solstices in both hemispheres to derive statistical relationships between ion upflow andspectral power as a function of spacecraft frame frequency bands between 0 and 4 Hz. Identification of ionospheric‐origin energetic ion upflows is automated, and the spectral powerin each frequency band is obtained via integration ofpower spectral density. Derived relationships are of the formfor upward ion fluxat 130‐km altitude, withthe mapped upward ion flux for a nominal spectral power nT. The highest correlation coefficients are obtained for spacecraft frame frequencies0.1–0.5 Hz. Summer solstice and fall equinox observations yield power law indices0.9–1.3 and correlation coefficients, while winter solstice observations yield0.4–0.8 with. Mass spectrometer observations reveal that the oxygen/hydrogen ion composition ratio near summer solstice is much greater than the corresponding ratio near winter. These results reinforce the importance of ion composition in outflow models. If observedperturbations result from Doppler‐shifted wave structures with near‐zero frequencies, we show that spacecraft frame frequencies0.1–0.5 Hz correspond to perpendicular spatial scales of several to tens of kilometers.

     
    more » « less
  4. Abstract

    Ionospheric conductance is a crucial factor in regulating the closure of magnetospheric field‐aligned currents through the ionosphere as Hall and Pedersen currents. Despite its importance in predictive investigations of the magnetosphere‐ionosphere coupling, the estimation of ionospheric conductance in the auroral region is precarious in most global first‐principles‐based models. This impreciseness in estimating the auroral conductance impedes both our understanding and predictive capabilities of the magnetosphere‐ionosphere system during extreme space weather events. In this article, we address this concern, with the development of an advanced Conductance Model for Extreme Events (CMEE) that estimates the auroral conductance from field‐aligned current values. CMEE has been developed using nonlinear regression over a year's worth of 1‐min resolution output from assimilative maps, specifically including times of extreme driving of the solar wind‐magnetosphere‐ionosphere system. The model also includes provisions to enhance the conductance in the aurora using additional adjustments to refine the auroral oval. CMEE has been incorporated within the Ridley Ionosphere Model (RIM) of the Space Weather Modeling Framework (SWMF) for usage in space weather simulations. This paper compares performance of CMEE against the existing conductance model in RIM, through a validation process for six space weather events. The performance analysis indicates overall improvement in the ionospheric feedback to ground‐based space weather forecasts. Specifically, the model is able to improve the prediction of ionospheric currents, which impact the simulateddB/dtandΔB, resulting in substantial improvements indB/dtpredictive skill.

     
    more » « less
  5. Abstract

    We used reanalyzed Jicamarca radar measurements to study the response of equatorial ionospheric electrodynamics and spread F during the main phase of the large September 2017 geomagnetic storm. Our observations near dusk on 7 September show very large upward drifts followed by a large short‐lived downward drift perturbation that completely suppressed the lower F region plasma irregularities and severely decreased the backscattered power from the higher altitude spread F. We suggest that this large short‐lived westward electric field perturbation is most likely of magnetospheric origin and is due to a sudden and very strong magnetic field reconfiguration. Later in the early night period, data indicate large, mostly upward, drift perturbations generally consistent with standard undershielding and overshielding electric field effects, but with amplitudes significantly larger than expected. Our analysis suggests that occurrence of storm‐time substorms is one of the major factors causing the large nighttime westward and eastward electric field perturbations observed at Jicamarca near the storm main phase. Our analysis also suggests that magnetospheric substorms play far more important roles on the electrodynamics of the equatorial nighttime ionosphere than has generally been thought.

     
    more » « less