skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Discovering new potential inhibitors to SARS-CoV-2 RNA dependent RNA polymerase (RdRp) using high throughput virtual screening and molecular dynamics simulations

RNA dependent RNA polymerase (RdRp), is an essential in the RNA replication within the life cycle of the severely acute respiratory coronavirus-2 (SARS-CoV-2), causing the deadly respiratory induced sickness COVID-19. Remdesivir is a prodrug that has seen some success in inhibiting this enzyme, however there is still the pressing need for effective alternatives. In this study, we present the discovery of four non-nucleoside small molecules that bind favorably to SARS-CoV-2 RdRp over the active form of the popular drug remdesivir (RTP) and adenosine triphosphate (ATP) by utilizing high-throughput virtual screening (HTVS) against the vast ZINC compound database coupled with extensive molecular dynamics (MD) simulations. After post-trajectory analysis, we found that the simulations of complexes containing both ATP and RTP remained stable for the duration of their trajectories. Additionally, it was revealed that the phosphate tail of RTP was stabilized by both the positive amino acid pocket and magnesium ions near the entry channel of RdRp which includes residues K551, R553, R555 and K621. It was also found that residues D623, D760, and N691 further stabilized the ribose portion of RTP with U10 on the template RNA strand forming hydrogen pairs with the adenosine motif. Using these models of RdRp, we employed them to screen the ZINC database of ~ 17 million molecules. Using docking and drug properties scoring, we narrowed down our selection to fourteen candidates. These were subjected to 200 ns simulations each underwent free energy calculations. We identified four hit compounds from the ZINC database that have similar binding poses to RTP while possessing lower overall binding free energies, with ZINC097971592 having a binding free energy two times lower than RTP.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Remdesivir (RDV) prodrug can be metabolized into a triphosphate form nucleotide analogue (RDV-TP) to bind and insert into the active site of viral RNA dependent RNA polymerase (RdRp) to further interfere with viral genome replication. In this work, we computationally studied how RDV-TP binds and inserts to the SARS-CoV-2 RdRp active site, in comparison with natural nucleotide substrate adenosine triphosphate (ATP). To do that, we first constructed atomic structural models of an initial binding complex (active site open) and a substrate insertion complex (active site closed), based on high-resolution cryo-EM structures determined recently for SARS-CoV-2 RdRp or non-structural protein (nsp) 12, in complex with accessory protein factors nsp7 and nsp8. By conducting all-atom molecular dynamics simulation with umbrella sampling strategies on the nucleotide insertion between the open and closed state RdRp complexes, our studies show that RDV-TP can initially bind in a comparatively stabilized state to the viral RdRp active site, as it primarily forms base stacking with the template uracil nucleotide (nt +1), which under freely fluctuations supports a low free energy barrier of the RDV-TP insertion (∼1.5 kcal mol −1 ). In comparison, the corresponding natural substrate ATP binds initially to the RdRp active site in Watson–Crick base pairing with the template nt, and inserts into the active site with a medium low free energy barrier (∼2.6 kcal mol −1 ), when the fluctuations of the template nt are well quenched. The simulations also show that the initial base stacking of RDV-TP with the template can be specifically stabilized by motif C-S759, S682 (near motif B) with the base, and motif G-K500 with the template backbone. Although the RDV-TP insertion can be hindered by motif F-R555/R553 interaction with the triphosphate, the ATP insertion seems to be facilitated by such interactions. The inserted RDV-TP and ATP can be further distinguished by specific sugar interaction with motif B-T687 and motif A-D623, respectively. 
    more » « less
  2. null (Ed.)
    The novel coronavirus disease 19 (Covid-19) which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a pandemic across the world, which necessitate the need for the antiviral drug discovery. One of the potential protein targets for coronavirus treatment is RNA-dependent RNA polymerase. It is the key enzyme in the viral replication machinery, and it does not exist in human beings, therefore its targeting has been considered as a strategic approach. Here we describe the identification of potential hits from Indonesian Herbal and ZINC databases. The pharmacophore modeling was employed followed by molecular docking and dynamics simulation for 40 ns. 151 and 14480 hit molecules were retrieved from Indonesian herbal and ZINC databases, respectively. Three hits that were selected based on the structural analysis were stable during 40 ns, while binding energy prediction further implied that ZINC1529045114, ZINC169730811, and 9-Ribosyl-trans-zeatin had tighter binding affinities compared to Remdesivir. The ZINC169730811 had the strongest affinity toward RdRp compared to the other two hits including Remdesivir and its binding was corroborated by electrostatic, van der Waals, and nonpolar contribution for solvation energies. The present study offers three hits showing tighter binding to RdRp based on MM-PBSA binding energy prediction for further experimental verification. 
    more » « less
  3. The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2020 has impacted daily life globally for over a year. While multiple vaccines have been authorized for emergency use and one oral medication has entered clinical trials, we are still seeking antiviral drugs for a long-term treatment for SARS-CoV-2 as well as other coronaviruses. Computational drug screenings of two SARS-CoV-2 protein target candidates are presented in this thesis: the nidoviral RNA uridylate-specific endoribonuclease (Nsp15) and the main protease (Mpro) of SARS-CoV-2. Nonstructural proteins of coronaviruses were selected as targets as they are more conserved across coronavirus strains than structural proteins. High throughput virtual screening of small molecule libraries including DrugBank and ZINC 15 resulted in several promising compounds for each of these targets. Molecular dynamics simulation allowed us to predict the binding energies for these compounds using molecular mechanics with generalized born surface area solvation calculations (MM-GBSA). Four top compounds were discovered for Nsp15 and eight compounds for Mpro. 
    more » « less
  4. Severe Acute respiratory syndrome coronavirus (SARS-CoV-1) attaches to the host cell surface to initiate the interaction between the receptor-binding domain (RBD) of its spike glycoprotein (S) and the human Angiotensin-converting enzyme (hACE2) receptor. SARS-CoV-1 mutates frequently because of its RNA genome, which challenges the antiviral development. Here, we per-formed computational saturation mutagenesis of the S protein of SARS-CoV-1 to identify the residues crucial for its functions. We used the structure-based energy calculations to analyze the effects of the missense mutations on the SARS-CoV-1 S stability and the binding affinity with hACE2. The sequence and structure alignment showed similarities between the S proteins of SARS-CoV-1 and SARS-CoV-2. Interestingly, we found that target mutations of S protein amino acids generate similar effects on their stabilities between SARS-CoV-1 and SARS-CoV-2. For example, G839W of SARS-CoV-1 corresponds to G857W of SARS-CoV-2, which decrease the stability of their S glycoproteins. The viral mutation analysis of the two different SARS-CoV-1 isolates showed that mutations, T487S and L472P, weakened the S-hACE2 binding of the 2003–2004 SARS-CoV-1 isolate. In addition, the mutations of L472P and F360S destabilized the 2003–2004 viral isolate. We further predicted that many mutations on N-linked glycosylation sites would increase the stability of the S glycoprotein. Our results can be of therapeutic importance in the design of antivirals or vaccines against SARS-CoV-1 and SARS-CoV-2. 
    more » « less
  5. The main protease (M pro ) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of M pro , a cysteine protease, have been determined, facilitating structure-based drug design. M pro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41–Cys145, M pro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV M pro , but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 M pro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of M pro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N δ (HD) and N ϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 M pro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts. 
    more » « less