skip to main content

Title: Gaia Astrometry Challenges the High Central Oxygen Abundance Claimed for the Pulsating Helium-Atmosphere White Dwarf KIC 08626021
Abstract

The asteroseismic radius determination previously reported for the pulsating helium-atmosphere white dwarf star KIC 08626021 is 6σdiscrepant with constraints from Gaia astrometry. This calls into question the other results of the asteroseismic analysis, especially the high (central) oxygen abundance that stellar evolutionary models have been unable to reproduce.

Authors:
Publication Date:
NSF-PAR ID:
10381273
Journal Name:
Research Notes of the AAS
Volume:
6
Issue:
11
Page Range or eLocation-ID:
Article No. 244
ISSN:
2515-5172
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the third and final data release of the K2 Galactic Archaeology Program (K2 GAP) for Campaigns C1–C8 and C10–C18. We provide asteroseismic radius and mass coefficients,κRandκM, for ∼19,000 red giant stars, which translate directly to radius and mass given a temperature. As such, K2 GAP DR3 represents the largest asteroseismic sample in the literature to date. K2 GAP DR3 stellar parameters are calibrated to be on an absolute parallactic scale based on Gaia DR2, with red giant branch and red clump evolutionary state classifications provided via a machine-learning approach. Combining these stellar parameters with GALAH DR3 spectroscopy, we determine asteroseismic ages with precisions of ∼20%–30% and compare age-abundance relations to Galactic chemical evolution models among both low- and high-αpopulations forα, light, iron-peak, and neutron-capture elements. We confirm recent indications in the literature of both increased Ba production at late Galactic times as well as significant contributions tor-process enrichment from prompt sources associated with, e.g., core-collapse supernovae. With an eye toward other Galactic archeology applications, we characterize K2 GAP DR3 uncertainties and completeness using injection tests, suggesting that K2 GAP DR3 is largely unbiased in mass/age, with uncertainties of 2.9% (stat.) ± 0.1% (syst.) and 6.7% (stat.) ±more »0.3% (syst.) inκRandκMfor red giant branch stars and 4.7% (stat.) ± 0.3% (syst.) and 11% (stat.) ± 0.9% (syst.) for red clump stars. We also identify percent-level asteroseismic systematics, which are likely related to the time baseline of the underlying data, and which therefore should be considered in TESS asteroseismic analysis.

    « less
  2. Abstract

    PG 1159-035 is the prototype of the PG 1159 hot (pre-)white dwarf pulsators. This important object was observed during the Kepler satellite K2 mission for 69 days in 59 s cadence mode and by the TESS satellite for 25 days in 20 s cadence mode. We present a detailed asteroseismic analysis of those data. We identify a total of 107 frequencies representing 32= 1 modes, 27 frequencies representing 12= 2 modes, and eight combination frequencies. The combination frequencies and the modes with very highkvalues represent new detections. The multiplet structure reveals an average splitting of 4.0 ± 0.4μHz for= 1 and 6.8 ± 0.2μHz for= 2, indicating a rotation period of 1.4 ± 0.1 days in the region of period formation. In the Fourier transform of the light curve, we find a significant peak at 8.904 ± 0.003μHz suggesting a surface rotation period of 1.299 ± 0.002 days. We also present evidence that the observed periods change on timescales shorter than those predicted by current evolutionary models. Our asteroseismic analysis finds an average period spacing for= 1 of 21.28 ± 0.02 s. The= 2 modes have a mean spacing of 12.97 ± 0.4 s. We performed a detailed asteroseismicmore »fit by comparing the observed periods with those of evolutionary models. The best-fit model hasTeff= 129, 600 ± 11 100 K,M*= 0.565 ± 0.024M, andlogg=7.410.54+0.38, within the uncertainties of the spectroscopic determinations. We argue for future improvements in the current models, e.g., on the overshooting in the He-burning stage, as the best-fit model does not predict excitation for all of the pulsations detected in PG 1159-035.

    « less
  3. Abstract

    We present an analysis of the first 20 second cadence light curves obtained by the TESS space telescope during its extended mission. We find improved precision of 20 second data compared to 2 minute data for bright stars when binned to the same cadence (≈10%–25% better forT≲ 8 mag, reaching equal precision atT≈ 13 mag), consistent with pre-flight expectations based on differences in cosmic-ray mitigation algorithms. We present two results enabled by this improvement. First, we use 20 second data to detect oscillations in three solar analogs (γPav,ζTuc, andπMen) and use asteroseismology to measure their radii, masses, densities, and ages to ≈1%, ≈3%, ≈1%, and ≈20% respectively, including systematic errors. Combining our asteroseismic ages with chromospheric activity measurements, we find evidence that the spread in the activity–age relation is linked to stellar mass and thus the depth of the convection zone. Second, we combine 20 second data and published radial velocities to recharacterizeπMen c, which is now the closest transiting exoplanet for which detailed asteroseismology of the host star is possible. We show thatπMen c is located at the upper edge of the planet radius valley for its orbital period, confirming that it has likely retained a volatile atmospheremore »and that the “asteroseismic radius valley” remains devoid of planets. Our analysis favors a low eccentricity forπMen c (<0.1 at 68% confidence), suggesting efficient tidal dissipation (Q/k2,1≲ 2400) if it formed via high-eccentricity migration. Combined, these early results demonstrate the strong potential of TESS 20 second cadence data for stellar astrophysics and exoplanet science.

    « less
  4. Abstract

    51 Eri is well known for hosting a directly imaged giant planet and for its membership to theβPictoris moving group. Using 2 minute cadence photometry from the Transiting Exoplanet Survey Satellite (TESS), we detect multiperiodic variability in 51 Eri that is consistent with pulsations of Gamma Doradus (γDor) stars. We identify the most significant pulsation modes (with frequencies between ∼0.5 and 3.9 cycles day−1and amplitudes ranging between ∼1 and 2 mmag) as dipole and quadrupole gravity modes, as well as Rossby modes, as previously observed in KeplerγDor stars. Our results demonstrate that previously reported variability attributed to stellar rotation is instead likely due toγDor pulsations. Using the mean frequency of the= 1 gravity modes, together with empirical trends of the KeplerγDor population, we estimate a plausible stellar core rotation period of0.90.1+0.3days for 51 Eri. We find no significant evidence for transiting companions around 51 Eri in the residual light curve. The detection ofγDor pulsations presented here, together with follow-up observations and modeling, may enable the determination of an asteroseismic age for this benchmark system. Future TESS observations would allow a constraint on the stellar core rotation rate, which in turn traces the surface rotation rate, andmore »thus would help clarify whether or not the stellar equatorial plane and orbit of 51 Eri b are coplanar.

    « less
  5. ABSTRACT

    K2 was a community-driven NASA mission where all targets were proposed through guest observer programmes. Here we provide an overview of one of the largest of these endeavours, the K2 Galactic Archaeology Programme (K2GAP), with about 25 per cent of the observed targets being allocated to this programme. K2GAP provides asteroseismic parameters for about 23 000 giant stars across the Galaxy, which together with spectroscopic stellar parameters can give age and masses of stars. We discuss in detail the target selection procedure and provide a python program that implements the selection function (github.com/sanjibs/k2gap). Broadly speaking, the targets were selected on 2MASS colour J − Ks > 0.5, with finely tuned adjustments for each campaign. We discuss the detection completeness of the asteroseismic parameters νmax and Δν. About 14 per cent of giants were found to miss νmax detections and it was difficult to detect Δν for RC stars. Making use of the selection function, we compare the observed distribution of asteroseismic masses to theoretical predictions. The median asteroseismic mass is higher by about 4 per cent compared to predictions. We provide a selection-function-matched mock catalogue of stars based on a synthetic model of the Galaxy for the community to use in subsequent analyses of the K2GAPmore »data set (physics.usyd.edu.au/k2gap/download/).

    « less