Abstract Dioxetane intermediates readily decompose to chemiluminescent triplet carbonyls, giving rise to what has been paradoxically called photochemistry in the dark. In this issue ofPhotochemistry and Photobiology, Bechara et al. report on mechanistic advances in such a reaction. With the use of horseradish peroxidase for isobutyraldehyde‐derived triplet acetone, light emission from acetone and singlet oxygen can be quenched. The experiments reveal that the reaction depends on oxygen and the amino acid. The analysis reveals that free tryptophan is a target of this form of “carbonyl stress,” with the efficient formation of mono‐, bi‐ and tricyclic compounds (N‐formylkynurenine, indoline, 1λ2‐indole and 3H‐indoles).
more »
« less
Oxygen‐Sensing Chemiluminescent Iridium(III) 1,2‐Dioxetanes: Unusual Coordination and Activity
Abstract Next generation chemiluminescent iridium 1,2‐dioxetane complexes have been developed which consist of the Schaap's 1,2‐dioxetane scaffold directly attached to the metal center. This was achieved by synthetically modifying the scaffold precursor with a phenylpyridine moiety, which can act as a ligand. Reaction of this scaffold ligand with the iridium dimer [Ir(BTP)2(μ‐Cl)]2(BTP=2‐(benzo[b]thiophen‐2‐yl)pyridine) yielded isomers which depict ligation through either the cyclometalating carbon or, interestingly, the sulfur atom of one BTP ligand. Their corresponding 1,2‐dioxetanes display chemiluminescent responses in buffered solutions, exhibiting a single, red‐shifted peak at 600 nm. This triplet emission was effectively quenched by oxygen, yielding in vitro Stern‐Volmer constants of 0.1 and 0.009 mbar−1for the carbon‐bound and sulfur compound, respectively. Lastly, the sulfur‐bound dioxetane was further utilized for oxygen sensing in muscle tissue of living mice and xenograft models of tumor hypoxia, depicting the ability of the probe chemiluminescence to penetrate biological tissue (total flux ∼106 p/s).
more »
« less
- Award ID(s):
- 2155170
- PAR ID:
- 10381341
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Analysis & Sensing
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2629-2742
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The chemiluminescent light‐emission pathway of phenoxy‐1,2‐dioxetane luminophores attracts growing interest within the scientific community. Dioxetane probes undergoing rapid flash‐type chemiexcitation exhibit higher detection sensitivity than those with a slow glow‐type chemiexcitation rate. We discovered that dioxetanes fused to non‐strained six‐member rings, with hetero atoms or inductive electron‐withdrawing groups, present both accelerated chemiexcitation rates and elevated chemical stability compared to dioxetanes fused to four‐member strained rings. DFT computational simulations supported the chemiexcitation acceleration observed by spiro‐fused six‐member rings with inductive electron‐withdrawing groups of dioxetanes. Specifically, a spiro‐dioxetane with a six‐member sulfone ring exhibited a chemiexcitation rate 293‐fold faster than that of spiro‐adamantyl‐dioxetane. A turn‐ON dioxetane probe for the detection of the enzyme β‐galactosidase, containing the six‐member sulfone unit, exhibited a S/N value of 108 in LB cell growth medium. This probe demonstrated a substantial increase in detection sensitivity towardsE. colibacterial cells expressing β‐galactosidase, with an LOD value that is 44‐fold more sensitive than that obtained by the adamantyl counterpart. The accelerated chemiexcitation and the elevated chemical stability presented by dioxetane containing a spiro‐fused six‐member ring with a sulfone inductive electron‐withdrawing group, make it an ideal candidate for designing efficient turn‐on chemiluminescent probes with exceptionally high detection sensitivity.more » « less
-
Abstract This computational study explores the copper (I) chloride catalyzed synthesis of (E)‐1‐(2,2‐dichloro‐1‐phenylvinyl)‐2‐phenyldiazene (2Cl‐VD) from readily available hydrazone derivative and carbon tetrachloride (CCl4).2Cl‐VDhas been extensively utilized to synthesize variety of heterocyclic organic compounds in mild conditions. The present computational investigations primarily focus on understanding the role of copper (I) andN1,N1,N2,N2‐tetramethylethane‐1,2‐diamine (TMEDA) in this reaction, TMEDA often being considered a proton scavenger by experimentalists. Considering TMEDA as a ligand significantly alters the energy barrier. In fact, it is only 8.3 kcal/mol higher compared to the ligand‐free (LF) route for the removal of a chlorine atom to form the radical·CCl3but the following steps are almost barrierless. This intermediate then participates in attacking the electrophilic carbon in the hydrazone. Crucially, the study reveals that the overall potential energy surface is thermodynamically favorable, and the theoretical turnover frequency (TOF) value is higher in the case of Cu(I)‐TMEDA complex catalyzed pathway.more » « less
-
Abstract Carbosulfenylation of olefins represents an important class of reactions for the synthesis of structurally diverse organosulfur compounds. Previous studies typically yield 1,2‐regioselectivity. In the context of diversity‐oriented synthesis, accessing the regioreversed products is desirable, significantly broadening the scope of these reactions. In this study, we report a nickel‐catalyzed 2,1‐carbosulfenylation of trifluoromethyl‐ andgem‐difluoroalkenes, using free thiols and benzyl bromides as sulfur and carbon sources, respectively. The unusual regioselectivity observed is enabled by a “radical sorting” mechanism. The Ni catalyst activates benzyl bromide to generate a benzylic radical that undergoes hydrogen atom transfer (HAT) with the thiol to form a sulfur‐centered radical. The sulfur radical subsequently adds to the fluoroalkenes, resulting in an α‐fluoroalkyl C‐radical. This radical undergoes SH2 with a Ni–CH2Ar to form a C(sp3)─C(sp3) bond and quaternary center, ultimately producing valuable fluoroalkyl thioethers. Isotopic labeling experiments corroborate a hydrogen atom transfer (HAT) event within the working mechanism.more » « less
-
Abstract The synthesis and characterization of the15N‐labeled analogue of the mitochondrial calcium uptake inhibitor [Cl(NH3)4Ru(μ‐N)Ru(NH3)4Cl]3+(Ru265) bearing [15N]NH3ligands is reported. Using [1H,15N] HSQC NMR spectroscopy, the rate constants for the axial chlorido ligand aquation of [15N]Ru265 in pH 7.4 buffer at 25 °C were found to bek1=(3.43±0.03)×10−4 s−1andk2=(4.03±0.09)×10−3 s−1. The reactivity of [15N]Ru265 towards biologically relevant small molecules was also assessed via this method, revealing that this complex can form coordination bonds to anionic oxygen and sulfur donors. Time‐based studies on these ligand‐binding reactions reveal this process to be slow relative to the time required for the complex to inhibit mitochondrial calcium uptake, suggesting that hydrogen‐bonding interactions, rather than the formation of coordination bonds, may play a more significant role in mediating the inhibitory properties of this complex.more » « less
An official website of the United States government
