skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating the forcing function in a mechanical system by an inverse calibration method
This article proposes and demonstrates a calibration-based integral formulation for resolving the forcing function in a mass–spring–damper system, given either displacement or acceleration data. The proposed method is novel in the context of vibrations, being thoroughly studied in the field of heat transfer. The approach can be expanded and generalized further to multi-variable systems associated with machine parts, vehicle suspensions, translational and rotational systems, gear systems, etc. when mathematically described by a system of constant property, linear, time-invariant ordinary differential equations. The analytic approach and subsequent numerical reconstruction of the forcing function is based on resolving a parameter-free inverse formulation for the equation(s) of motion. The calibration approach is formulated in the frequency domain and takes advantage of several observations produced by the dimensionality reduction leading to an algebratized system involving an input–output relationship and a transfer function possessing all the system parameters. The transfer function is eliminated in lieu of experimental data, from a calibration effort, thus leading to a reduction of systematic errors. These parameter-free, reduced systematic error aspects are the distinct and novel advantages of the proposed method. A first-kind Volterra integral equation is formed containing only the unknown forcing function and experimental data. As with all ill-posed problems, regularization must be introduced for system stabilization. A future-time technique is instituted for forming a family of predictions based on the chosen regularization parameter. The optimal regularization parameter is estimated using a combination of phase–plane analysis and cross-correlation principles. Finally, a numerical simulation is performed verifying the proposed approach.  more » « less
Award ID(s):
2031808
PAR ID:
10381357
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Vibration and Control
Volume:
28
Issue:
21-22
ISSN:
1077-5463
Page Range / eLocation ID:
3352 to 3363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A technique based on the Wiener path integral (WPI) is developed for determining the stochastic response of diverse nonlinear systems with fractional derivative elements. Specifically, a reduced-order WPI formulation is proposed, which can be construed as an approximation-free dimension reduction approach that renders the associated computational cost independent of the total number of stochastic dimensions of the problem. In fact, the herein developed technique can determine, directly, any lower-dimensional joint response probability density function corresponding to a subset only of the response vector components. This is done by utilizing an appropriate combination of fixed and free boundary conditions in the related variational, functional minimization, problem. Notably, the reduced-order WPI formulation is particularly advantageous for problems where the interest lies in few only specific degrees-of-freedom whose stochastic response is critical for the design and optimization of the overall system. An indicative numerical example is considered pertaining to a stochastically excited tuned mass-damper-inerter nonlinear system with a fractional derivative element. Comparisons with relevant Monte Carlo simulation data demonstrate the accuracy and computational efficiency of the technique. 
    more » « less
  2. In this paper, we present efficient numerical schemes based on the Lagrange multiplier approach for the Navier-Stokes equations. By introducing a dynamic equation (involving the kinetic energy, the Lagrange multiplier, and a regularization parameter), we form a new system which incorporates the energy evolution process but is still equivalent to the original equations. Such nonlinear system is then discretized in time based on the backward differentiation formulas, resulting in a dynamically regularized Lagrange multiplier (DRLM) method. First- and second-order DRLM schemes are derived and shown to be unconditionally energy stable with respect to the original variables. The proposed schemes require only the solutions of two linear Stokes systems and a scalar quadratic equation at each time step. Moreover, with the introduction of the regularization parameter, the Lagrange multiplier can be uniquely determined from the quadratic equation, even with large time step sizes, without affecting accuracy and stability of the numerical solutions. Fully discrete energy stability is also proved with the Marker-and-Cell (MAC) discretization in space. Various numerical experiments in two and three dimensions verify the convergence and energy dissipation as well as demonstrate the accuracy and robustness of the proposed DRLM schemes. 
    more » « less
  3. Abstract This paper explores a novel revision of the Faddeev equation for three-body (3B) bound states, as initially proposed in Ref. [J. Golak, K. Topolnicki, R. Skibiński, W. Glöckle, H. Kamada, A. Nogga, Few Body Syst. 54, 2427 (2013)]. This innovative approach, referred to as t-matrix-free in this paper, directly incorporates two-body (2B) interactions and completely avoids the 2B transition matrices. We extend this formalism to relativistic 3B bound states using a three-dimensional (3D) approach without using partial wave decomposition. To validate the proposed formulation, we perform a numerical study using spin-independent Malfliet–Tjon and Yamaguchi interactions. Our results demonstrate that the relativistic t-matrix-free Faddeev equation, which directly implements boosted interactions, accurately reproduces the 3B mass eigenvalues obtained from the conventional form of the Faddeev equation, referred to as t-matrix-dependent in this paper, with boosted 2B t-matrices. Moreover, the proposed formulation provides a simpler alternative to the standard approach, avoiding the computational complexity of calculating boosted 2B t-matrices and leading to significant computational time savings. 
    more » « less
  4. Abstract High frequency excitation (HFE) is known to induce various nontrivial effects, such as system stiffening, biasing, and the smoothing of discontinuities in dynamical systems. These effects become increasingly pertinent in multi-stable systems, where the system’s bias towards a certain equilibrium state can depend heavily on the combination of forcing parameters, leading to stability in some scenarios and instability in others. In this initial investigation, our objective is to pinpoint the specific parameter ranges in which the bistable system demonstrates typical HFE effects, both through numerical simulations and experimental observations. To accomplish this, we utilize the method of multiple scales to analyze the interplay among different time scales. The equation of slow dynamics reveals how the excitation parameters lead to a change in stability of equilibrium points. Additionally, we delineate the parameter ranges where stabilizing previously unstable equilibrium configurations is achievable. We demonstrate the typical positional biasing effect of high-frequency excitation that leads to a shift in the equilibrium points as the excitation parameter is varied. This kind of excitation can enable the active shaping of potential wells. Finally, we qualitatively validate our numerical findings through experimental testing using a simplistic model made with LEGOs. 
    more » « less
  5. Positron emission tomography (PET) is traditionally modeled as discrete systems. Such models may be viewed as piecewise constant approximations of the underlying continuous model for the physical processes and geometry of the PET imaging. Due to the low accuracy of piecewise constant approximations, discrete models introduce an irreducible modeling error which fundamentally limits the quality of reconstructed images. To address this bottleneck, we propose an integral equation model for the PET imaging based on the physical and geometrical considerations, which describes accurately the true coincidences. We show that the proposed integral equation model is equivalent to the existing idealized model in terms of line integrals which is accurate but not suitable for numerical approximation. The proposed model allows us to discretize it using higher accuracy approximation methods. In particular, we discretize the integral equation by using the collocation principle with piecewise linear polynomials. The discretization leads to new ill-conditioned discrete systems for the PET reconstruction, which are further regularized by a novel wavelet-based regularizer. The resulting non-smooth optimization problem is then solved by a preconditioned proximity fixed-point algorithm. Convergence of the algorithm is established for a range of parameters involved in the algorithm. The proposed integral equation model combined with the discretization, regularization, and optimization algorithm provides a new PET image reconstruction method. Numerical results reveal that the proposed model substantially outperforms the conventional discrete model in terms of the consistency to simulated projection data and reconstructed image quality. This indicates that the proposed integral equation model with appropriate discretization and regularizer can significantly reduce modeling errors and suppress noise, which leads to improved image quality and projection data estimation. 
    more » « less