skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Award ID(s):
2008461
PAR ID:
10381422
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Artificial Intelligence and Statistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, graph neural networks (GNNs), as the backbone of graph-based machine learning, demonstrate great success in various domains (e.g., e-commerce). However, the performance of GNNs is usually unsatisfactory due to the highly sparse and irregular graph-based operations. To this end, we propose TC-GNN, the first GNN acceleration framework based on GPU Tensor Core Units (TCUs). The core idea is to reconcile the "Sparse" GNN computation with the high-performance "Dense" TCUs. Specifically, we conduct an in-depth analysis of the sparse operations in mainstream GNN computing frameworks. We introduce a novel sparse graph translation technique to facilitate TCU processing of the sparse GNN workload. We implement an effective CUDA core and TCU collaboration design to fully utilize GPU resources. We integrate MGG with the PyTorch framework for high programmability. Rigorous experiments show an average of 1.70× speedup over the state-of-the-art DGL framework across various models and datasets. 
    more » « less