skip to main content


Title: Ultrafast low-pump fluence all-optical modulation based on graphene-metal hybrid metasurfaces
Abstract

Graphene is an attractive material for all-optical modulation because of its ultrafast optical response and broad spectral coverage. However, all-optical graphene modulators reported so far require high pump fluence due to the ultrashort photo-carrier lifetime and limited absorption in graphene. We present modulator designs based on graphene-metal hybrid plasmonic metasurfaces with highly enhanced light-graphene interaction in the nanoscale hot spots at pump and probe (signal) wavelengths. Based on this design concept, we have demonstrated high-speed all-optical modulators at near and mid-infrared wavelengths (1.56 μm and above 6 μm) with significantly reduced pump fluence (1–2 orders of magnitude) and enhanced optical modulation. Ultrafast near-infrared pump-probe measurement results suggest that the modulators’ response times are ultimately determined by graphene’s ultrafast photocarrier relaxation times on the picosecond scale. The proposed designs hold the promise to address the challenges in the realization of ultrafast all-optical modulators for mid-and far-infrared wavelengths.

 
more » « less
NSF-PAR ID:
10381541
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
11
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) are promising for optical modulation, detection, and light emission since their material properties can be tuned on-demand via electrostatic doping1–21. The optical properties of TMDs have been shown to change drastically with doping in the wavelength range near the excitonic resonances22–26. However, little is known about the effect of doping on the optical properties of TMDs away from these resonances, where the material is transparent and therefore could be leveraged in photonic circuits. Here, we probe the electro-optic response of monolayer TMDs at near infrared (NIR) wavelengths (i.e. deep in the transparency regime), by integrating them on silicon nitride (SiN) photonic structures to induce strong light -matter interaction with the monolayer. We dope the monolayer to carrier densities of (7.2 ± 0.8) × 1013 cm-2, by electrically gating the TMD using an ionic liquid [P14+] [FAP-]. We show strong electro-refractive response in monolayer tungsten disulphide (WS2) at NIR wavelengths by measuring a large change in the real part of refractive index ∆n = 0.53, with only a minimal change in the imaginary part ∆k = 0.004. We demonstrate photonic devices based on electrostatically gated SiN-WS2 phase modulator with high efficiency ( ) of 0.8 V · cm. We show that the induced phase change relative to the change in absorption (i.e. ∆n/∆k) is approximately 125, that is significantly higher than the ones achieved in 2D materials at different spectral ranges and in bulk materials, commonly employed for silicon photonic modulators such as Si and III-V on Si, while accompanied by negligible insertion loss. Efficient phase modulators are critical for enabling large-scale photonic systems for applications such as Light Detection and Ranging (LIDAR), phased arrays, optical switching, coherent optical communication and quantum and optical neural networks27–30. 
    more » « less
  2. Abstract

    Active nanostructured optical components show promise as potential building blocks for novel light‐based computing and data processing architectures. However, nanoscale all‐optical switches that have low activation powers and high‐contrast ultrafast switching have been elusive so far. Here, pump–probe measurements performed on amorphous‐Ge‐based micro‐resonator metasurfaces that exhibit strong resonant modes in the mid‐infrared are reported. Relative change is observed in transmittance of ΔT/T ≈ 1 with picosecond (down to τ ≈ 0.5 ps) free carrier relaxation rates, obtained with very low pump fluences of 50 μJ cm−2. These observations are attributed to efficient free carrier promotion, affecting light transmittance via high quality‐factor optical resonances, followed by an increased electron–phonon scattering of free carriers due to the amorphous crystal structure of Ge. Full‐wave simulations based on a permittivity model that describes free‐carrier damping through crystal structure disorder find excellent agreement with the experimental data. These findings offer an efficient and robust platform for all‐optical switching at the nanoscale.

     
    more » « less
  3. We propose an on-chip triply resonant electro-optic modulator architecture for RF-to-optical signal conversion and provide a detailed theoretical analysis of the optimal “circuit-level” device geometries and their performance limits. The designs maximize the RF-optical conversion efficiency through simultaneous resonant enhancement of the RF drive signal, a continuous-wave (CW) optical pump, and the generated optical sideband. The optical pump and sideband are resonantly enhanced in respective supermodes of a two-coupled-cavity optical resonator system, while the RF signal can be enhanced in addition by an LC circuit formed by capacitances of the optical resonator active regions and (integrated) matching inductors. We show that such designs can offer 15-50 dB improvement in conversion efficiency over conventional microring modulators. In the proposed configurations, the photon lifetime (resonance linewidth) limits the instantaneous RF bandwidth of the electro-optic response but does not limit its central RF frequency. The latter is set by the coupling strength between the two coupled cavities and is not subject to the photon lifetime constraint inherent to conventional singly resonant microring modulators. This feature enables efficient operation at high RF carrier frequencies without a reduction in efficiency commonly associated with the photon lifetime limit and accounts for 10-30 dB of the total improvement. Two optical configurations of the modulator are proposed: a “basic” configuration with equal Q-factors in both supermodes, most suitable for narrowband RF signals, and a “generalized” configuration with independently tailored supermode Q-factors that supports a wider instantaneous bandwidth. A second significant 5-20 dB gain in modulation efficiency is expected from RF drive signal enhancement by integrated LC resonant matching, leading to the total expected improvement of 15-50 dB. Previously studied triply-resonant modulators, with coupled longitudinal (across the free spectral range (FSR)) modes, have large resonant mode volume for typical RF frequencies, which limits the interaction between the optical and RF fields. In contrast, the proposed modulators support maximally tightly confined resonant modes, with strong coupling between the mode fields, which increases and maintains high device efficiency across a range of RF frequencies. The proposed modulator architecture is compact, efficient, capable of modulation at high RF carrier frequencies and can be applied to any cavity design or modulation mechanism. It is also well suited to moderate Q, including silicon, implementations, and may be enabling for future CMOS RF-electronic-photonic systems on chip.

     
    more » « less
  4. Abstract

    The optical Kerr nonlinearity of plasmonic metals provides enticing prospects for developing reconfigurable and ultracompact all‐optical modulators. In nanostructured metals, the coherent coupling of light energy to plasmon resonances creates a nonequilibrium electron distribution at an elevated electron temperature that gives rise to significant Kerr optical nonlinearities. Although enhanced nonlinear responses of metals facilitate the realization of efficient modulation devices, the intrinsically slow relaxation dynamics of the photoexcited carriers, primarily governed by electron–phonon interactions, impedes ultrafast all‐optical modulation. Here, femtosecond (≈190 fs) all‐optical modulation in plasmonic systems via the activation of relaxation pathways for hot electrons at the interface of metals and electron acceptor materials, following an on‐resonance excitation of subradiant lattice plasmon modes, is demonstrated. Both the relaxation kinetics and the optical nonlinearity can be actively tuned by leveraging the spectral response of the plasmonic design in the linear regime. The findings offer an opportunity to exploit hot‐electron‐induced nonlinearities for design of self‐contained, ultrafast, and low‐power all‐optical modulators based on plasmonic platforms.

     
    more » « less
  5. A major limitation of transient optical spectroscopy is that relatively high laser fluences are required to enable broadband, multichannel detection with acceptable signal-to-noise levels. Under typical experimental conditions, many condensed phase and nanoscale materials exhibit fluence-dependent dynamics, including higher order effects such as carrier–carrier annihilation. With the proliferation of commercial laser systems, offering both high repetition rates and high pulse energies, have come new opportunities for high sensitivity pump-probe measurements at low pump fluences. However, experimental considerations needed to fully leverage the statistical advantage of these laser systems have not been fully described. Here, we demonstrate a high repetition rate, broadband transient spectrometer capable of multichannel shot-to-shot detection at 90 kHz. Importantly, we find that several high-speed cameras exhibit a time-domain fixed pattern noise resulting from interleaved analog-to-digital converters, which is particularly detrimental to the conventional “ON/OFF” modulation scheme used in pump-probe spectroscopy. Using a modified modulation and data processing scheme, we achieve a noise level of 10−5 in 4 s for differential transmission, an order of magnitude lower than for commercial 1 kHz transient spectrometers for the same acquisition time. We leverage the high sensitivity of this system to measure the differential transmission of monolayer graphene at low pump fluence. We show that signals on the order of 10−6 OD can be measured, enabling a new data acquisition regime for low-dimensional materials. 
    more » « less