skip to main content


Title: Contemporary tree growth shows altered climate memory
Abstract

Trees are long‐lived organisms, exhibiting temporally complex growth arising from strong climatic “memory.” But conditions are becoming increasingly arid in the western USA. Using a century‐long tree‐ring network, we find altered climate memory across the entire range of a widespread western US conifer: growth is supported by precipitation falling further into the past (+15 months), while increasingly impacted by more recent temperature conditions (−8 months). Tree‐ring datasets can be biased, so we confirm altered climate memory in a second, ecologically‐sampled tree‐ring network. Predicted drought responses show trees may have also become more sensitive to repeat drought. Finally, plots near sites with relatively longer precipitation memory and shorter temperature memory had significantly lower recent mortality rates (R2 = 0.61). We argue that increased drought frequency has altered climate memory, demonstrate how non‐stationarity may arise from failure to account for memory, and suggest memory length may be predictive of future tree mortality.

 
more » « less
NSF-PAR ID:
10381617
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
25
Issue:
12
ISSN:
1461-023X
Page Range / eLocation ID:
p. 2663-2674
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Increasingly severe and prolonged droughts are contributing to tree stress and forest mortality across western North America. However, in many cases, we currently have poor information concerning how drought responses in forests vary in relation to competition, climate, and site and tree characteristics. We used annual tree ring evidence of13C discrimination (Δ13C) and growth metrics to assess drought resistance and resilience for six conifer species at the intersection of several bioregions in northern California. Within each species' range in northern California, we collected competition and tree characteristics from 270 focal trees across sites that varied from wetter to drier habitat conditions (54 sites). Across sites, all six conifer species weathered the severe 2013–2015 drought with reasonably high resistance and post‐drought resilience. However, we found important differences in drought responses between coastal and montane species based on annual growth and Δ13C metrics. Broadly, the two coastal species showed consistent declines in drought resistance across successive drought years, whereas the four montane species maintained high drought resistance across drought years. More specifically, we found lower Δ13C and growth during drought years in coastal species, suggesting stomatal closure during drought with the potential for vulnerability to carbon depletion during long‐term drought. Conversely, Δ13C and growth were stable in montane species throughout the drought, which may contribute to hydraulic failure under increased drought frequency and/or severity. We also evaluated environmental factors that affect Δ13C using data from before and during the drought. These physiological models were consistent for the two coastal species, with a positive relationship between annual precipitation and Δ13C and a negative relationship between tree density and Δ13C. Conversely, the four montane models illustrated a greater importance of site conditions on drought responses for these species. Our findings show differential risk for drought stress across diverse conifers during severe drought. This work highlights the importance of site and tree characteristics in determining drought responses across cool, annually humid coastal habitats to seasonally dry montane habitats.

     
    more » « less
  2. Abstract

    Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought‐related mortality derived from measurements of tree‐ring growth (ring width index; RWI) and carbon isotope discrimination (∆13C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012–2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine‐dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management—particularly in drier regions—may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming.

     
    more » « less
  3. Abstract

    Tree‐ring chronologies from bristlecone pine (Pinus longaeva) are a unique proxy used to understand climate variability over the middle to late Holocene. The annual rings from trees growing toward the species' lower elevational range are sensitive to precipitation variability. Interpretation of the ring‐width signal at the upper forest border has been more difficult. We evaluate differences in climate induced by topography (topoclimate) to better understand the dual signals of temperature and moisture. We unmix signals from trees growing at and near the upper forest border based on the seasonal mean temperature (SMT) experienced by each tree. We find that trees growing in exposures with SMT <7.5 C are limited by temperature, while trees with SMT > 7.5 C are limited by moisture. We demonstrate this independently through analysis of growth in the frequency and time domains and using a process model of xylogenesis. Furthermore, we identify increasing moisture sensitivity in trees formerly limited by temperature.

     
    more » « less
  4. Abstract

    Legacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.

     
    more » « less
  5. Abstract

    Warming temperatures and rising moisture deficits are expected to increase the rates of background tree mortality–low amounts of tree mortality (~0.5%–2% year−1), characterizing the forest demographic processes in the absence of abrupt, coarse‐scale disturbance events (e.g. fire). When compounded over multiple decades and large areas, even minor increases in background tree mortality (e.g. <0.5% year−1) can cause changes to forest communities and carbon storage potential that are comparable to or greater than those caused by disturbances.

    We examine how temporal variability in rates of background tree mortality for four subalpine conifers reflects variability in climate and climate teleconnections using observations of tree mortality from 1982 to 2019 at Niwot Ridge, Colorado, USA. Individually marked trees (initial population 5,043) in 13 permanent plots—located across a range of site conditions, stand ages and species compositions—were censused for new mortality nine times over 37 years.

    Background tree mortality was primarily attributed to stress from unfavourable climate and competition (71.2%) and bark beetle activity (23.3%), whereas few trees died from wind (5.3%) and wildlife impacts (0.2%). Mean annualized tree mortality attributed to tree stress and bark beetles more than tripled across all stands between initial censuses (0.26% year−1, 1982–1993/1994) and recent censuses (0.82% year−1, 2008–2019). Higher rates of tree mortality were related to warmer maximum summer temperatures, greater summer moisture deficits, and negative anomalies in ENSO (La Niña), with greater effects of drought in some subpopulations (tree size, age and species). For example, in older stands (>250 years), larger and older trees were more likely to die than smaller and younger trees. Differences in tree mortality rates and sensitivity to climate among subpopulations that varied by stand type may lead to unexpected shifts in stand composition and structure.

    Synthesis. A strong relationship between higher rates of tree mortality and warmer, drier summer climate conditions implies that climate warming will continue to increase background mortality rates in subalpine forests. Combined with increases in disturbances and declining frequency of moist‐cool years suitable for seedling establishment, increasing rates of tree mortality have the potential to drive declines in subalpine tree populations.

     
    more » « less