skip to main content


Title: NADH dehydrogenases drive inward electron transfer in Shewanella oneidensis MR ‐1
Abstract

Shewanella oneidensisMR‐1 is a promising chassis organism for microbial electrosynthesis because it has a well‐defined biochemical pathway (the Mtr pathway) that can connect extracellular electrodes to respiratory electron carriers inside the cell. We previously found that the Mtr pathway can be used to transfer electrons from a cathode to intracellular electron carriers and drive reduction reactions. In this work, we hypothesized that native NADH dehydrogenases form an essential link between the Mtr pathway and NADH in the cytoplasm. To test this hypothesis, we compared the ability of various mutant strains to accept electrons from a cathode and transfer them to an NADH‐dependent reaction in the cytoplasm, reduction of acetoin to 2,3‐butanediol. We found that deletion of genes encoding NADH dehydrogenases from the genome blocked electron transfer from a cathode to NADH in the cytoplasm, preventing the conversion of acetoin to 2,3‐butanediol. However, electron transfer to fumarate was not blocked by the gene deletions, indicating that NADH dehydrogenase deletion specifically impacted NADH generation and did not cause a general defect in extracellular electron transfer. Proton motive force (PMF) is linked to the function of the NADH dehydrogenases. We added a protonophore to collapse PMF and observed that it blocked inward electron transfer to acetoin but not fumarate. Together these results indicate a link between the Mtr pathway and intracellular NADH. Future work to optimize microbial electrosynthesis inS. oneidensisMR‐1 should focus on optimizing flux through NADH dehydrogenases.

 
more » « less
Award ID(s):
1750785
NSF-PAR ID:
10381630
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Microbial Biotechnology
Volume:
16
Issue:
3
ISSN:
1751-7915
Page Range / eLocation ID:
p. 560-568
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Buan, Nicole R. (Ed.)
    ABSTRACT

    Extracellular electron transfer is a process by which bacterial cells can exchange electrons with a redox-active material located outside of the cell. InShewanella oneidensis, this process is natively used to facilitate respiration using extracellular electron acceptors such as Fe(III) or an anode. Previously, it was demonstrated that this process can be used to drive the microbial electrosynthesis (MES) of 2,3-butanediol (2,3-BDO) inS. oneidensisexogenously expressing butanediol dehydrogenase (BDH). Electrons taken into the cell from a cathode are used to generate NADH, which in turn is used to reduce acetoin to 2,3-BDO via BDH. However, generating NADH via electron uptake from a cathode is energetically unfavorable, so NADH dehydrogenases couple the reaction to proton motive force. We therefore need to maintain the proton gradient across the membrane to sustain NADH production. This work explores accomplishing this task by bidirectional electron transfer, where electrons provided by the cathode go to both NADH formation and oxygen (O2) reduction by oxidases. We show that oxidases use trace dissolved oxygen in a microaerobic bioelectrical chemical system (BES), and the translocation of protons across the membrane during O2reduction supports 2,3-BDO generation. Interestingly, this process is inhibited by high levels of dissolved oxygen in this system. In an aerated BES, O2molecules react with the strong reductant (cathode) to form reactive oxygen species, resulting in cell death.

    IMPORTANCE

    Microbial electrosynthesis (MES) is increasingly employed for the generation of specialty chemicals, such as biofuels, bioplastics, and cancer therapeutics. For these systems to be viable for industrial scale-up, it is important to understand the energetic requirements of the bacteria to mitigate unnecessary costs. This work demonstrates sustained production of an industrially relevant chemical driven by a cathode. Additionally, it optimizes a previously published system by removing any requirement for phototrophic energy, thereby removing the additional cost of providing a light source. We also demonstrate the severe impact of oxygen intrusion into bioelectrochemical systems, offering insight to future researchers aiming to work in an anaerobic environment. These studies provide insight into both the thermodynamics of electrosynthesis and the importance of the bioelectrochemical systems’ design.

     
    more » « less
  2. Newman, Dianne K. (Ed.)
    ABSTRACT Sideroxydans species are important chemolithoautotrophic Fe(II)-oxidizing bacteria in freshwater environments and play a role in biogeochemical cycling of multiple elements. Due to difficulties in laboratory cultivation and genetic intractability, the electron transport proteins required for the growth and survival of this organism remain understudied. In Sideroxydans lithotrophicus ES-1, it is proposed that the Mto pathway transfers electrons from extracellular Fe(II) oxidation across the periplasm to an inner membrane NapC/NirT family protein encoded by Slit_2495 to reduce the quinone pool. Based on sequence similarity, Slit_2495 has been putatively called CymA, a NapC/NirT family protein which in Shewanella oneidensis MR-1 oxidizes the quinol pool during anaerobic respiration of a wide range of substrates. However, our phylogenetic analysis using the alignment of different NapC/NirT family proteins shows that Slit_2495 clusters closer to NirT sequences than to CymA. We propose the name ImoA (inner membrane oxidoreductase) for Slit_2495. Our data demonstrate that ImoA can oxidize quinol pools in the inner membrane and is able to functionally replace CymA in S. oneidensis. The ability of ImoA to oxidize quinol in vivo as opposed to its proposed function of reducing quinone raises questions about the directionality and/or reversibility of electron flow through the Mto pathway in S. lithotrophicus. IMPORTANCE Fe(II)-oxidizing bacteria play an important role in biogeochemical cycles. At circumneutral pH, these organisms perform extracellular electron transfer, taking up electrons from Fe(II) outside the cell, potentially through a porin-cytochrome complex in the outer membrane encoded by the Mto pathway. Electrons from Fe(II) oxidation would then be transported to the quinone pool in the inner membrane via periplasmic and inner membrane electron transfer proteins. Directly demonstrating the functionality of genes in neutrophilic iron oxidizers is challenging due to the absence of robust genetic methods. Here, we heterologously expressed a NapC/NirT family tetraheme cytochrome ImoA, encoded by Slit_2495, an inner membrane protein from the Gram-negative Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1, proposed to be involved in extracellular electron transfer to reduce the quinone pool. ImoA functionally replaced the inner membrane c-type cytochrome CymA in the Fe(III)-reducing bacterium Shewanella oneidensis. We suggest that ImoA may function primarily to oxidize quinol inS. lithotrophicus. 
    more » « less
  3. Abstract

    Synthetic systems that facilitate electron transport across cellular membranes are of interest in bio‐electrochemical technologies such as bio‐electrosynthesis, waste water remediation, and microbial fuel cells. The design of second generation redox‐active conjugated oligoelectrolytes (COEs) bearing terminal cationic groups and a π‐delocalized core capped by two ferrocene units is reported. The two COEs, DVFBO and F4‐DVFBO, have similar membrane affinity, but fluorination of the core results in a higher oxidation potential (422 ± 5 mV compared to 365 ± 4 mV vs Ag/AgCl for the neutral precursors in chloroform). Concentration‐dependent aggregation is suggested by zeta potential measurements and confirmed by cryogenic transmission electron microscopy. When the working electrode potential (ECA) is poised below the oxidation potential of the COEs (ECA= 200 mV) in three‐electrode electrochemical cells containingShewanella oneidensisMR‐1, addition of DVFBO and F4‐DVFBO produces negligible biocurrent enhancement over controls. AtECA= 365 mV, DVFBO increases steady‐state biocurrent by 67 ± 12% relative to controls, while the increase with F4‐DVFBO is 30 ± 5%. Cyclic voltammetry supports that DVFBO increases catalytic biocurrent and that F4‐DVFBO has less impact, consistent with their oxidation potentials. Overall, electron transfer from microbial species is modulated via tailoring of the COE redox properties.

     
    more » « less
  4. Abstract

    Shewanella oneidensis MR‐1 gains energy by extracellular electron transfer to solid surfaces. They employ c‐type cytochromes in two Mtr transmembrane complexes, forming a multiheme wire for electron transport across the cellular outer membrane. We investigated electron‐ and hole‐transfer mechanisms in the external terminal of the two complexes, MtrC and MtrF. Comparison of computed redox potentials with previous voltammetry experiments in distinct environments (isolated and electrode‐bound conditions of PFV or in vivo) suggests that these systems function in different regimes depending on the environment. Analysis of redox potential shifts in different regimes indicates strong coupling between the hemes via an interplay between direct Coulomb and indirect interactions through local structural reorganization. The latter results in the screening of Coulomb interactions and explains poor correlation of the strength of the heme‐to‐heme interactions with the distance between the hemes.

     
    more » « less
  5. null (Ed.)
    Microbial electrosynthesis (MES) is an emerging technology that can convert carbon dioxide (CO2) into value-added organic carbon compounds using electrons supplied from a cathode. However, MES is affected by low product formation due to limited extracellular electron uptake by microbes. Herein, a novel cathode was developed from chemically synthesized magnetite nanoparticles and reduced graphene oxide nanocomposite (rGO-MNPs). This nanocomposite was electrochemically deposited on carbon felt (CF/rGO-MNPs), and the modified material was used as a cathode for MES production. The bioplastic, polyhydroxybutyrate (PHB) produced by Rhodopseudomonas palustris TIE-1 (TIE-1), was measured from reactors with modified and unmodified cathodes. Results demonstrate that the magnetite nanoparticle anchored graphene cathode (CF/rGO-MNPs) exhibited higher PHB production (91.31±0.9 mg l−1). This is ∼4.2 times higher than unmodified carbon felt (CF), and 20 times higher than previously reported using graphite. This modified cathode enhanced electron uptake to −11.7±0.1 μA cm−2, ∼5 times higher than CF cathode (−2.3±0.08 μA cm−2). The faradaic efficiency of the modified cathode was ∼2 times higher than the unmodified cathode. Electrochemical analysis and scanning electron microscopy suggest that rGO-MNPs facilitated electron uptake and improved PHB production by TIE-1. Overall, the nanocomposite (rGO-MNPs) cathode modification enhances MES efficiency. 
    more » « less