skip to main content


Title: Finding predictive models for singlet fission by machine learning
Abstract

Singlet fission (SF), the conversion of one singlet exciton into two triplet excitons, could significantly enhance solar cell efficiency. Molecular crystals that undergo SF are scarce. Computational exploration may accelerate the discovery of SF materials. However, many-body perturbation theory (MBPT) calculations of the excitonic properties of molecular crystals are impractical for large-scale materials screening. We use the sure-independence-screening-and-sparsifying-operator (SISSO) machine-learning algorithm to generate computationally efficient models that can predict the MBPT thermodynamic driving force for SF for a dataset of 101 polycyclic aromatic hydrocarbons (PAH101). SISSO generates models by iteratively combining physical primary features. The best models are selected by linear regression with cross-validation. The SISSO models successfully predict the SF driving force with errors below 0.2 eV. Based on the cost, accuracy, and classification performance of SISSO models, we propose a hierarchical materials screening workflow. Three potential SF candidates are found in the PAH101 set.

 
more » « less
Award ID(s):
2021803
NSF-PAR ID:
10381650
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
8
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Singlet fission (SF) is a photophysical process considered as a possible scheme to bypass the Shockley–Queisser limit by generating two triplet-state excitons from one high-energy photon. Polyacene crystals, such as tetracene and pentacene, have shown outstanding SF performance both theoretically and experimentally. However, their instability prevents them from being utilized in SF-based photovoltaic devices. In search of practical SF chromophores, we use many-body perturbation theory within the GW approximation and Bethe–Salpeter equation to study the excitonic properties of a family of pyrene-stabilized acenes. We propose a criterion to define the convergence of exciton wave-functions with respect to the fine k-point grid used in the BerkeleyGW code. An open-source Python code is presented to perform exciton wave-function convergence checks and streamline the double Bader analysis of exciton character. We find that the singlet excitons in pyrene-stabilized acenes have a higher degree of charge transfer character than in the corresponding acenes. The pyrene-fused tetracene and pentacene derivatives exhibit comparable excitation energies to their corresponding acenes, making them potential SF candidates. The pyrene-stabilized anthracene derivative is considered as a possible candidate for triplet–triplet annihilation because it yields a lower SF driving force than anthracene. 
    more » « less
  2. The escalating global energy predicament implores for a revolutionary resolution—one that converts sunlight into electricity—holding the key to supreme conversion efficiency. This comprehensive review embarks on the exploration of the principle of generating multiple excitons per absorbed photon, a captivating concept that possesses the potential to redefine the fundamental confines of conversion efficiency, albeit its application remains limited in photovoltaic devices. At the nucleus of this phenomenon are two principal processes: multiple exciton generation (MEG) within quantum-confined environments, and singlet fission (SF) inside molecular crystals. The process of SF, characterized by the cleavage of a single photogenerated singlet exciton into two triplet excitons, holds promise to potentially amplify photon-to-electron conversion efficiency twofold, thereby laying the groundwork to challenge the detailed balance limit of solar cell efficiency. Our discourse primarily dissects the complex nature of SF in crystalline organic semiconductors, laying special emphasis on the anisotropic behavior of SF and the diffusion of the subsequent triplet excitons in single-crystalline polyacene organic semiconductors. We initiate this journey of discovery by elucidating the principles of MEG and SF, tracing their historical genesis, and scrutinizing the anisotropy of SF and the impact of quantum decoherence within the purview of functional mode electron transfer theory. We present an overview of prominent techniques deployed in investigating anisotropic SF in organic semiconductors, including femtosecond transient absorption microscopy and imaging as well as stimulated Raman scattering microscopies, and highlight recent breakthroughs linked with the anisotropic dimensions of Davydov splitting, Herzberg–Teller effects, SF, and triplet transport operations in single-crystalline polyacenes. Through this comprehensive analysis, our objective is to interweave the fundamental principles of anisotropic SF and triplet transport with the current frontiers of scientific discovery, providing inspiration and facilitating future ventures to harness the anisotropic attributes of organic semiconductor crystals in the design of pioneering photovoltaic and photonic devices.

     
    more » « less
  3. Abstract

    Hematin crystallization is an essential element of heme detoxification of malaria parasites and its inhibition by antimalarial drugs is a common treatment avenue. We demonstrate at biomimetic conditions in vitro irreversible inhibition of hematin crystal growth due to distinct cooperative mechanisms that activate at high crystallization driving forces. The evolution of crystal shape after limited-time exposure to both artemisinin metabolites and quinoline-class antimalarials indicates that crystal growth remains suppressed after the artemisinin metabolites and the drugs are purged from the solution. Treating malaria parasites with the same agents reveals that three- and six-hour inhibitor pulses inhibit parasite growth with efficacy comparable to that of inhibitor exposure during the entire parasite lifetime. Time-resolved in situ atomic force microscopy (AFM), complemented by light scattering, reveals two molecular-level mechanisms of inhibitor action that prevent β-hematin growth recovery. Hematin adducts of artemisinins incite copious nucleation of nonextendable nanocrystals, which incorporate into larger growing crystals, whereas pyronaridine, a quinoline-class drug, promotes step bunches, which evolve to engender abundant dislocations. Both incorporated crystals and dislocations are known to induce lattice strain, which persists and permanently impedes crystal growth. Nucleation, step bunching, and other cooperative behaviors can be amplified or curtailed as means to control crystal sizes, size distributions, aspect ratios, and other properties essential for numerous fields that rely on crystalline materials.

     
    more » « less
  4. Abstract Although first principles based anharmonic lattice dynamics is one of the most common methods to obtain phonon properties, such method is impractical for high-throughput search of target thermal materials. We develop an elemental spatial density neural network force field as a bottom-up approach to accurately predict atomic forces of ~80,000 cubic crystals spanning 63 elements. The primary advantage of our indirect machine learning model is the accessibility of phonon transport physics at the same level as first principles, allowing simultaneous prediction of comprehensive phonon properties from a single model. Training on 3182 first principles data and screening 77,091 unexplored structures, we identify 13,461 dynamically stable cubic structures with ultralow lattice thermal conductivity below 1 Wm −1 K −1 , among which 36 structures are validated by first principles calculations. We propose mean square displacement and bonding-antibonding as two low-cost descriptors to ease the demand of expensive first principles calculations for fast screening ultralow thermal conductivity. Our model also quantitatively reveals the correlation between off-diagonal coherence and diagonal populations and identifies the distinct crossover from particle-like to wave-like heat conduction. Our algorithm is promising for accelerating discovery of novel phononic crystals for emerging applications, such as thermoelectrics, superconductivity, and topological phonons for quantum information technology. 
    more » « less
  5. Abstract

    Triplet population dynamics of solution cast films of isolated polymorphs of 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pn) provide quantitative experimental evidence that triplet excitation energy transfer is the dominant mechanism for correlated triplet pair (CTP) separation during singlet fission. Variations in CTP separation rates are compared for polymorphs of TIPS‐Pn with their triplet diffusion characteristics that are controlled by their crystal structures. Since triplet energy transfer is a spin‐forbidden process requiring direct wavefunction overlap, simple calculations of electron and hole transfer integrals are used to predict how molecular packing arrangements would influence triplet transfer rates. The transfer integrals reveal how differences in the packing arrangements affect electronic interactions between pairs of TIPS‐Pn molecules, which are correlated with the relative rates of CTP separation in the polymorphs. These findings suggest that relatively simple computations in conjunction with measurements of molecular packing structures may be used as screening tools to predict a priori whether new types of singlet fission sensitizers have the potential to undergo fast separation of CTP states to form multiplied triplets.

     
    more » « less