skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Quantum phase transition in a clean superconductor with repulsive dynamical interaction
Abstract

We consider a model of electrons at zero temperature, with a repulsive interaction which is a function of the energy transfer. Such an interaction can arise from the combination of electron–electron repulsion at high energies and the weaker electron–phonon attraction at low energies. As shown in previous works, superconductivity can develop despite the overall repulsion due to the energy dependence of the interaction, but the gap Δ(ω) must change sign at some (imaginary) frequencyω0to counteract the repulsion. However, when the constant repulsive part of the interaction is increased, a quantum phase transition towards the normal state occurs. We show that, as the phase transition is approached, Δ andω0must vanish in a correlated way such that$$1/| \log [{{\Delta }}(0)]| \sim {\omega }_{0}^{2}$$1/log[Δ(0)]~ω02. We discuss the behavior of phase fluctuations near this transition and show that the correlation between Δ(0) andω0locks the phase stiffness to a non-zero value.

 
more » « less
Award ID(s):
1834856
PAR ID:
10381686
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Materials
Volume:
7
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The crystal structure and bonding environment of K2Ca(CO3)2bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus,$${K}_{0}=46.9$$K0=46.9GPa with an imposed value of$${K}_{0}^{\prime}= 4$$K0=4for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along thec-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinicC2/mstructure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields$${V}_{0}=322.2$$V0=322.2 Å3$$,$$,$${K}_{0}=24.8$$K0=24.8GPa and$${K}_{0}^{\prime}=4.0$$K0=4.0using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of theC2/mphase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure.

     
    more » « less
  2. Abstract

    The electricE1 and magneticM1 dipole responses of the$$N=Z$$N=Znucleus$$^{24}$$24Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$24Mg($$\gamma ,\gamma ^{\prime }$$γ,γ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$Jπ=1-, four$$J^{\pi }=1^+$$Jπ=1+, and six$$J^{\pi }=2^+$$Jπ=2+states in$$^{24}$$24Mg. De-excitation$$\gamma $$γrays were detected using the four high-purity germanium detectors of the$$\gamma $$γELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$B(M1)=2.7(3)μN2is observed, but this$$N=Z$$N=Znucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$B(E1)0.61×10-3 e$$^2 \, $$2fm$$^2$$2. The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$B(Π1,1iπ21+)/B(Π1,1iπ0gs+)branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$24Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ρ2(E0,02+0gs+)strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$B(M1,1+02+)/B(M1,1+0gs+)branching ratio of the 10.712 MeV$$1^+$$1+level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$Δβ22between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$02+level.

     
    more » « less
  3. Abstract

    We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ρ0meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$μ+and$$ \mu ^{-}$$μ-beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$c2$$< W<$$<W<17.0 GeV/$$c^2$$c2, 1.0 (GeV/c)$$^2$$2$$< Q^2<$$<Q2<10.0 (GeV/c)$$^2$$2and 0.01 (GeV/c)$$^2$$2$$< p_{\textrm{T}}^2<$$<pT2<0.5 (GeV/c)$$^2$$2. Here,Wdenotes the mass of the final hadronic system,$$Q^2$$Q2the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$pTthe transverse momentum of the$$\rho ^0$$ρ0meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$γTVL) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ρ0production.

     
    more » « less
  4. A<sc>bstract</sc>

    We report the first measurement of the inclusivee+e$$ b\overline{b} $$bb¯$$ {D}_s^{\pm } $$Ds±Xande+e$$ b\overline{b} $$bb¯→ D0/$$ {\overline{D}}^0 $$D¯0Xcross sections in the energy range from 10.63 to 11.02 GeV. Based on these results, we determineσ(e+e$$ {B}_s^0{\overline{B}}_s^0 $$Bs0B¯s0X) andσ(e+e$$ B\overline{B} $$BB¯X) in the same energy range. We measure the fraction of$$ {B}_s^0 $$Bs0events at Υ(10860) to befs= ($$ {22.0}_{-2.1}^{+2.0} $$22.02.1+2.0)%. We determine also the ratio of the$$ {B}_s^0 $$Bs0inclusive branching fractions$$ \mathcal{B} $$B($$ {B}_s^0 $$Bs0→ D0/$$ {\overline{D}}^0 $$D¯0X)/$$ \mathcal{B} $$B($$ {B}_s^0 $$Bs0$$ {D}_s^{\pm } $$Ds±X) = 0.416 ± 0.018 ± 0.092. The results are obtained using the data collected with the Belle detector at the KEKB asymmetric-energye+ecollider.

     
    more » « less
  5. Abstract

    Let$$X\rightarrow {{\mathbb {P}}}^1$$XP1be an elliptically fiberedK3 surface, admitting a sequence$$\omega _{i}$$ωiof Ricci-flat metrics collapsing the fibers. LetVbe a holomorphicSU(n) bundle overX, stable with respect to$$\omega _i$$ωi. Given the corresponding sequence$$\Xi _i$$Ξiof Hermitian–Yang–Mills connections onV, we prove that, ifEis a generic fiber, the restricted sequence$$\Xi _i|_{E}$$Ξi|Econverges to a flat connection$$A_0$$A0. Furthermore, if the restriction$$V|_E$$V|Eis of the form$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j-0)$$j=1nOE(qj-0)forndistinct points$$q_j\in E$$qjE, then these points uniquely determine$$A_0$$A0.

     
    more » « less