skip to main content


Title: Amplification of downstream flood stage due to damming of fine-grained rivers
Abstract

River dams provide many benefits, including flood control. However, due to constantly evolving channel morphology, downstream conveyance of floodwaters following dam closure is difficult to predict. Here, we test the hypothesis that the incised, enlarged channel downstream of dams provides enhanced water conveyance, using a case study from the lower Yellow River, China. We find that, although flood stage is lowered for small floods, counterintuitively, flood stage downstream of a dam can be amplified for moderate and large floods. This arises because bed incision is accompanied by sediment coarsening, which facilitates development of large dunes that increase flow resistance and reduce velocity relative to pre-dam conditions. Our findings indicate the underlying mechanism for such flood amplification may occur in >80% of fine-grained rivers, and suggest the need to reconsider flood control strategies in such rivers worldwide.

 
more » « less
NSF-PAR ID:
10381697
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Environmental flow releases are an effective tool to meet multiple management objectives, including maintaining river conveyance, restoring naturally functioning riparian plant communities, and controlling invasive species. In this context, predicting plant mortality during floods remains a key area of uncertainty for both river managers and ecologists, particularly with respect to how flood hydraulics and sediment dynamics interact with the plants’ own traits to influence their vulnerability to scour and burial.

    To understand these processes better, we conducted flume experiments to quantify different plant species’ vulnerability to flooding across a range of plant sizes, patch densities, and sediment condition (equilibrium transport versus sediment deficit), using sand‐bed rivers in the U.S. southwest as our reference system. We ran 10 experimental floods in a 0.6 m wide flume using live seedlings of cottonwood and tamarisk, which have contrasting morphologies.

    Sediment supply, plant morphology, and patch composition all had significant impacts on plant vulnerability during floods. Floods under sediment deficit conditions, which typically occur downstream of dams, resulted in bed degradation and a 35% greater risk of plant loss compared to equilibrium sediment conditions. Plants in sparse patches dislodged five times more frequently than in dense patches. Tamarisk plants and patches had greater frontal area, larger basal diameter, longer roots, and lower crown position compared to cottonwood across all seedling heights. These traits were associated with a 75% reduction in tamarisk seedlings’ vulnerability to scour compared to cottonwood.

    Synthesis and applications. Tamarisk's greater survivability helps to explain its vigorous establishment and persistence on regulated rivers where flood magnitudes have been reduced. Furthermore, its documented influence on hydraulics, sediment deposition, and scour patterns in flumes is amplified at larger scales in strongly altered river channels where it has broadly invaded. Efforts to remove riparian vegetation using flow releases to maintain open floodways and/or control the spread of non‐native species will need to consider the target plants’ size, density, and species‐specific traits, in addition to the balance of sediment transport capacity and supply in the river system.

     
    more » « less
  2. Abstract

    The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.

     
    more » « less
  3. Abstract

    Changes in the severity and likelihood of flooding events are typically associated with changes in the intensity and frequency of streamflows, but temporal adjustments in a river's conveyance capacity can also contribute to shifts in flood hazard. To assess the relative importance of channel conveyance to flood hazard, we compare variations in channel conveyance to variations in the flow magnitude of moderate (1.2 years) floods at 50 river gauges in western Washington State between 1930 and 2020. In unregulated rivers, moderate floods have increased across the region, but in regulated rivers this trend is suppressed and in some cases reversed. Variations in channel conveyance are ubiquitous, but the magnitude and timing of adjustments are not regionally uniform. At 40% of gages, conveyance changes steadily and gradually. More often, however, conveyance variability is nonlinear, consisting of multidecadal oscillations (36% of gages), rapid changes due to unusually large sediment‐supply events (14% of gages), and increases or decreases to conveyance following flow regulation (10% of gages). The relative importance of conveyance variability for flood risk depends on the mode of adjustment; in certain locations with historic landslides, extreme floods, and flow regulation, the influence of conveyance changes on flood risk matches or exceeds that of streamflow at the same site. Flood hazard management would benefit from incorporating historic long‐term and short‐term conveyance changes in predictions of future flood hazard variability.

     
    more » « less
  4. Abstract

    Hydropower dams have received increased global attention due to their detrimental socioenvironmental ramifications. Such attention has led to an increase in studies on the impacts of reservoir operation on river flow; however, a holistic understanding of the compounded effects of hydropower dams on different hydrological characteristics is lacking, especially for large river basins such as the Amazon where hydropower development is on the rise. Here, we mechanistically quantify the historical impacts of existing dams and the potential impacts of the collective operation of existing and planned dams on a basin‐wide scale in the Amazon for the 1981–2019 period. We build on the recently developed high‐resolution (3‐arcmin; ∼5 km) river‐floodplain‐reservoir model, the CaMa‐Flood‐Dam, which is enhanced to realistically simulate hydropower dam operation considering maximized power production. Flood simulations are further downscaled to 3 arc‐seconds (∼90 m) resolution to investigate the impacts of dams on fine‐scale flood dynamics across the basin. Results indicate that existing dams have substantially altered downstream river flow and flooding patterns across the Amazon River basin. Specifically, large dams in the Amazonian subbasins, including the Xingu, Madeira, and Tocantins, have altered downstream river flow amplitude by up to 3 orders of magnitude. Further, the collective operation of existing and planned dams could increasingly alter river flow patterns, causing ∼10% decrease in flood duration in many parts of the Amazon mainstem. Our results provide quantitative evidence on the severity of the hydrologic impacts of large hydropower dams and have important implications for sustainable hydropower operation and development in the Amazon and worldwide.

     
    more » « less
  5. Abstract

    Sediment transfer, or connectivity, by aeolian processes between channel-proximal and upland deposits in river valleys is important for the maintenance of river corridor biophysical characteristics. In regulated river systems, dams control the magnitude and duration of discharge. Alterations to the flow regime driven by dams that increase the inundation duration of sediment, or which drive the encroachment of vegetation into areas formerly composed of labile sediment and result in channel narrowing, may reduce sediment transfer from near-channel deposits to uplands via aeolian processes. Employing spatial methods developed by Kaspraket al(2018Prog. Phys. Geogr.), here we use data describing the areal extent of bare (i.e. subaerially exposed and non-vegetated) sediment along 168 km of the Colorado River downstream from Glen Canyon Dam in Grand Canyon, USA, in conjunction with inundation extent modeling to forecast how future flows of this highly regulated river will drive changes in the areal extent of sediment available for aeolian transport. We also compare modern bare sediment area to that which presumably would have existed under pre-dam hydrographs. Over the next two decades, the planned flow regime from Glen Canyon Dam will result in slight decreases in bare sediment area (−1%) on an annual scale. This is in contrast to pre-dam years, when unregulated low flows led to marked increases in bare sediment area as compared to the current discharge regime. Our findings also indicate that ∼75% of bare sediment in the study reach is inundated continuously at present, owing to increased baseflows in the post-dam flow regime; consequently, any reductions in flows below modern-day low discharges have the potential to expose large areas of bare sediment. We use vegetation modeling to quantify areas susceptible to vegetation encroachment under future flows, finding that 80% of bare sediment area is suitable for colonization by invasive tamarisk under the current flow regime. Our findings imply that the Colorado River in Grand Canyon, a system marked by widespread erosion of sediment resources and encroachment of riparian vegetation in the post-dam period, is likely to continue to see decreasing bare sediment extent over the coming decades in the absence of direct intervention through flow regime modification or widespread vegetation removal.

     
    more » « less