A wide variety of nipple locations and configurations exist among pinnipeds. Like all marine mammals, pinnipeds can have supernumerary nipples that form in utero. Supernumerary nipples have been documented in several species of pinnipeds, the only taxonomic group of marine mammals with variation in nipple number. We document multiple observations (
The profound impacts that maternal provisioning of finite energy resources has on offspring survival have been extensively studied across mammals. This study shows that in addition to calories, high hemoprotein concentrations in diving mammals necessitates exceptional female-to-pup iron transfer. Numerous indices of iron mobilization (ferritin, serum iron, total-iron-binding-capacity, transferrin saturation) were significantly elevated during lactation in adult female Weddell seals (
- PAR ID:
- 10381737
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract n = 4) of female Weddell seals (Leptonychotes weddellii ) with supernumerary nipples in Erebus Bay, Antarctica, including a female Weddell seal with four nipples that was observed nursing two pups. Intraspecific variation in the number of supernumerary nipples observed included both one and two supernumerary nipples. The majority of the observed supernumerary nipples were nursed on by pups, but lactation was unable to be confirmed. These are the first documented observations of supernumerary nipples in Weddell seals. -
Abstract Changes in buoyancy of marine mammals can be used to infer environmental changes. In multiple seal species, how “fast” an animal sinks reveals body condition changes through shifts in buoyancy as the ratio between lean and lipid tissue changes. However, quantifying similar at‐sea changes in Weddell seals (
Leptonychotes weddellii ) has remained unexplored. Here, we present a method of inferring buoyancy of Weddell seals by monitoring descent rates from 4‐s time‐depth data, to reveal in situ insight of their life cycle. We defined a Buoyancy Indicator Segment (BIS) as the descent rate of a dive segment created with the broken‐stick method that was systematically filtered to only include characteristic nonstroking and directed travel segments while excluding lung buoyancy biases. We found that BISs predicted body condition changes in Weddell seals, being a function of dive duration, mean depth, and time‐of‐year. Descent rates quickened with troughs in early April due to postmolt muscle recovery, early July due to winter conditions, and early September possibly due to pregnancy. Each trough was followed by weight gain, with slowing descent rates reaching peaks in late May, early August, and late October. This new approach showed that determining at‐sea condition is possible for Weddell seals, deriving a powerful species and environmental monitoring tool. -
Abstract Field observations suggest that time spent in the water by Weddell seal pups during lactation varies among individuals, which could yield important developmental tradeoffs. We analyzed data from 713 pups born to 419 different mothers over 9 years to evaluate total time in the water, age at first entry, and potential sources of variation using temperature loggers attached to the rear flipper of pups. Pups first entered the water at 11–29 days of age (
M = 14.9) and spent 4–204 hr (M = 69.3) in the water by 30 days of age. Age at first entry was earlier for pups with higher birth mass and mothers of above average reproductive experience. Total time in the water was related to maternal identity and greater for female pups and for pups that had higher birth mass, mothers of intermediate age, mothers that skipped reproduction in the previous year, and for pups that first entered the water at younger ages. Phenotypic traits explain observed variation in the development of a key life history behavior in the Weddell seal. Strong individual variation in time spent in metabolically costly swimming and diving might lead to variation in growth, energy stores, and survival and fitness outcomes. -
null (Ed.)Some marine birds and mammals can perform dives of extraordinary duration and depth. Such dive performance is dependent on many factors, including total body oxygen (O2) stores. For diving penguins, the respiratory system (air sacs and lungs) constitutes 30-50% of the total body O2 store. To better understand the role and mechanism of parabronchial ventilation and O2 utilization in penguins both on the surface and during the dive, we examined air sac partial pressures of O2 (PO2) in emperor penguins (Aptenodytes forsteri) equipped with backpack PO2 recorders. Cervical air sac PO2s at rest were lower than in other birds, while the cervical air sac to posterior thoracic air sac PO2 difference was larger. Pre-dive cervical air sac PO2s were often greater than those at rest, but had a wide range and were not significantly different from those at rest. The maximum respiratory O2 store and total body O2 stores calculated with representative anterior and posterior air sac PO2 data did not differ from prior estimates. The mean calculated anterior air sac O2 depletion rate for dives up to 11 min was approximately one-tenth that of the posterior air sacs. Low cervical air sac PO2s at rest may be secondary to a low ratio of parabronchial ventilation to parabronchial blood O2 extraction. During dives, overlap of simultaneously recorded cervical and posterior thoracic air sac PO2 profiles supported the concept of maintenance of parabronchial ventilation during a dive by air movement through the lungs.more » « less
-
Abstract The Weddell seal (
Leptonychotes weddellii ) thrives in its extreme Antarctic environment. We generated the Weddell seal genome assembly and a high-quality annotation to investigate genome-wide evolutionary pressures that underlie its phenotype and to study genes implicated in hypoxia tolerance and a lipid-based metabolism. Genome-wide analyses included gene family expansion/contraction, positive selection, and diverged sequence (acceleration) compared to other placental mammals, identifying selection in coding and non-coding sequence in five pathways that may shape cardiovascular phenotype. Lipid metabolism as well as hypoxia genes contained more accelerated regions in the Weddell seal compared to genomic background. Top-significant genes wereSUMO2 andEP300 ; both regulate hypoxia inducible factor signaling. Liver expression of four genes with the strongest acceleration signals differ between Weddell seals and a terrestrial mammal, sheep. We also report a high-density lipoprotein-like particle in Weddell seal serum not present in other mammals, including the shallow-diving harbor seal.